The equation \( x^{2}+9 x-3=0 \) has two solutions \( A \) and \( B \) where
\( A
Ask by Bird Stephens. in the United States
Jan 23,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the equation \( x^{2}+9x-3=0 \), we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 9 \), and \( c = -3 \). First, we calculate the discriminant: \[ b^2 - 4ac = 9^2 - 4(1)(-3) = 81 + 12 = 93. \] Now plug the values into the formula: \[ x = \frac{-9 \pm \sqrt{93}}{2(1)} = \frac{-9 \pm \sqrt{93}}{2}. \] Calculating the two solutions: 1. \( A = \frac{-9 - \sqrt{93}}{2} \) 2. \( B = \frac{-9 + \sqrt{93}}{2} \) Now we can give the decimal values of \( A \) and \( B \): Using \( \sqrt{93} \approx 9.644 \): 1. \( A \approx \frac{-9 - 9.644}{2} \approx \frac{-18.644}{2} \approx -9.322 \) 2. \( B \approx \frac{-9 + 9.644}{2} \approx \frac{0.644}{2} \approx 0.322 \) Thus, the solutions are approximately: \( A \approx -9.322 \) and \( B \approx 0.322 \). The answers are: \( A = -9.322 \) and \( B = 0.322 \) (to three decimal places).