Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 9 and standard deviation 23. What is the probability that \( X \) is between 21 and 91 ? Write your answer as a decimal rounded to the nearest thousandth.

Ask by Hampton Hampton. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 21 and 91 is approximately **0.301**.

Solución

To find the probability that \( X \) is between 21 and 91, where \( X \) is normally distributed with a mean (\( \mu \)) of 9 and a standard deviation (\( \sigma \)) of 23, we can follow these steps: 1. **Standardize the Values:** Convert the values 21 and 91 to their corresponding \( Z \)-scores using the formula: \[ Z = \frac{X - \mu}{\sigma} \] - For \( X = 21 \): \[ Z_1 = \frac{21 - 9}{23} = \frac{12}{23} \approx 0.522 \] - For \( X = 91 \): \[ Z_2 = \frac{91 - 9}{23} = \frac{82}{23} \approx 3.565 \] 2. **Find the Probabilities:** Using standard normal distribution tables or a calculator: - \( \Phi(Z_1) = \Phi(0.522) \approx 0.699 \) - \( \Phi(Z_2) = \Phi(3.565) \approx 0.9998 \) 3. **Calculate the Probability Between 21 and 91:** \[ P(21 \leq X \leq 91) = \Phi(Z_2) - \Phi(Z_1) \approx 0.9998 - 0.699 = 0.3008 \] Rounding to the nearest thousandth: \[ P(21 \leq X \leq 91) \approx 0.301 \] **Answer:** The probability that \( X \) is between 21 and 91 is approximately **0.301**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is between 21 and 91, we can standardize these values using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] Where \( \mu = 9 \) and \( \sigma = 23 \). 1. For \( X = 21 \): \[ Z_1 = \frac{21 - 9}{23} = \frac{12}{23} \approx 0.522 \] 2. For \( X = 91 \): \[ Z_2 = \frac{91 - 9}{23} = \frac{82}{23} \approx 3.565 \] Next, we can use a standard normal distribution table or a calculator to find the probabilities corresponding to these Z-scores. - The probability for \( Z_1 \approx 0.522 \) is approximately 0.6985. - The probability for \( Z_2 \approx 3.565 \) is approximately 0.9998. Now, to find the probability that \( X \) is between 21 and 91, we subtract the two probabilities: \[ P(21 < X < 91) = P(Z < 3.565) - P(Z < 0.522) \approx 0.9998 - 0.6985 \approx 0.3013 \] Rounding to the nearest thousandth, the probability that \( X \) is between 21 and 91 is: \[ \boxed{0.301} \]

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad