Find the equation of the line, in the form \( y=m x+b \), or \( x=c \), having the given properties. Perpendicular to the line \( y=2 x+4 \) and passing through \( (-2,2) \). \( y= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the equation of the line perpendicular to \( y=2x+4 \), we first need to determine the slope of the original line. The slope (m) is 2, so the slope of the perpendicular line will be the negative reciprocal, which is \( -\frac{1}{2} \). Now we can use the point-slope form to find the equation of the line. The point-slope form is given by: \[ y - y_1 = m(x - x_1) \] Substituting \( m = -\frac{1}{2} \) and the point \( (-2, 2) \): \[ y - 2 = -\frac{1}{2}(x + 2) \] Simplifying this gives: \[ y - 2 = -\frac{1}{2}x - 1 \] \[ y = -\frac{1}{2}x + 1 \] So, the equation of the line in the form \( y = mx + b \) is: \[ y = -\frac{1}{2}x + 1 \]