4. Find \( f(x) \div g(x) \) \[ \begin{array}{l}\text { a. } f(x)=4 x^{5}+12 x^{4} \div x^{3}+4 \\ g(x)=x-1 \\ \text { b. } f(x)=-6+4 x+5 x^{2} \\ g(x)=x^{2}\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find \( f(x) \div g(x) \) for each of the cases given, let's solve them one at a time. **a.** For \( f(x) = 4x^5 + 12x^4 \div x^3 + 4 \): First, we interpret the expression as: \[ f(x) = 4x^5 + \frac{12x^4}{x^3} + 4 = 4x^5 + 12x + 4 \] Then, \( g(x) = x - 1 \). Now, we perform the division \( f(x) \div g(x) \): \[ f(x) \div g(x) = \frac{4x^5 + 12x + 4}{x - 1} \] To simplify this, we can use polynomial long division: 1. Divide the leading term: \( 4x^5 \div x = 4x^4 \). 2. Multiply \( (x - 1) \) by \( 4x^4 \) and subtract from the original polynomial. 3. Repeat this process with the remainder until you reach a degree lower than that of \( g(x) \). **b.** For \( f(x) = -6 + 4x + 5x^2 \): Rearranging, we have: \[ f(x) = 5x^2 + 4x - 6 \] And \( g(x) = x^2 \). Now, we perform the division \( f(x) \div g(x) \): \[ f(x) \div g(x) = \frac{5x^2 + 4x - 6}{x^2} \] This simplifies directly: 1. Divide \( 5x^2 \div x^2 = 5 \). 2. The remainder will be \( \frac{4x - 6}{x^2} \), which can be expressed as: \[ 5 + \frac{4x - 6}{x^2} \] To conclude, summarize the division results: - For part (a), you navigate through polynomial long division. - For part (b), the division provides a straightforward expression involving a constant plus a fraction.