Find the product: \( (8 n-3)(5 n+7) \) \( 40 n^{2}-21 \) \( 13 n^{2}+17 n+4 \) \( 40 n^{2}-41 n-21 \) \( 40 n^{2}+41 n-21 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the product \( (8n - 3)(5n + 7) \), we can use the distributive property (also known as the FOIL method for binomials). 1. Multiply the first terms: \( 8n \cdot 5n = 40n^2 \) 2. Multiply the outer terms: \( 8n \cdot 7 = 56n \) 3. Multiply the inner terms: \( -3 \cdot 5n = -15n \) 4. Multiply the last terms: \( -3 \cdot 7 = -21 \) Now, combine these results: - The \( n^2 \) term: \( 40n^2 \) - The \( n \) terms: \( 56n - 15n = 41n \) - The constant term: \( -21 \) So the final expression is: \[ 40n^2 + 41n - 21 \] Thus, the product is \( 40n^2 + 41n - 21 \).