Pregunta
upstudy study bank question image url

\( \square \) Demonstrate how to set up the velocity-distance-time triangle

Ask by Edwards Washington. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To set up the velocity-distance-time triangle, draw a triangle with **Distance (_d_)** at the top, **Time (_t_)** on the left, and **Velocity (_v_)** on the right. This helps recall the formulas: - **Velocity (_v_)** = **Distance (_d_)** / **Time (_t_)** - **Distance (_d_)** = **Velocity (_v_)** × **Time (_t_)** - **Time (_t_)** = **Distance (_d_)** / **Velocity (_v_)** Use the triangle to identify which variable you need to solve for by covering it and reading the remaining variables to find the appropriate formula.

Solución

Certainly! The velocity-distance-time triangle is a useful visual tool that helps you understand and solve problems related to motion by illustrating the relationship between **velocity (_v_)**, **distance (_d_)**, and **time (_t_)**. This triangle makes it easier to remember the key formulas and determine which variable you need to solve for based on the information given. ## Velocity-Distance-Time Triangle Diagram Here's how you can set up the triangle: ``` Distance (d) ____________ | \ | \ | \ | \ | \ |_________________\ Time (t) Velocity (v) ``` Alternatively, it can be represented more compactly as: ``` d ----- | \ | \ t v ``` **Diagram Explanation:** - **Top Corner:** Represents **Distance (_d_)** - **Bottom Left Corner:** Represents **Time (_t_)** - **Bottom Right Corner:** Represents **Velocity (_v_)** ## How to Use the Triangle The triangle helps you quickly recall the fundamental formulas relating these three variables: 1. **Velocity (_v_)** = **Distance (_d_)** / **Time (_t_)** \[ v = \frac{d}{t} \] 2. **Distance (_d_)** = **Velocity (_v_)** × **Time (_t_)** \[ d = v \times t \] 3. **Time (_t_)** = **Distance (_d_)** / **Velocity (_v_)** \[ t = \frac{d}{v} \] ### Step-by-Step Usage 1. **Identify the Unknown:** Determine which variable you need to solve for (i.e., _v_, _d_, or _t_). 2. **Cover the Unknown in the Triangle:** To find the formula for the variable you need, cover it up in the triangle. The remaining two variables will form the formula. 3. **Read the Formula:** Use the positions of the covered and revealed variables to recall the appropriate formula. ### Examples #### Example 1: Finding Velocity **Problem:** If a car travels 150 kilometers in 3 hours, what is its velocity? **Using the Triangle:** 1. Identify the unknown: **Velocity (_v_)** 2. Cover **_v_** in the triangle. 3. The remaining variables are **Distance (_d_)** and **Time (_t_)**. 4. Formula: \( v = \frac{d}{t} \) **Calculation:** \[ v = \frac{150\, \text{km}}{3\, \text{hrs}} = 50\, \text{km/hr} \] #### Example 2: Finding Time **Problem:** A runner has a velocity of 8 meters per second and covers a distance of 400 meters. How much time did the runner take? **Using the Triangle:** 1. Identify the unknown: **Time (_t_)** 2. Cover **_t_** in the triangle. 3. The remaining variables are **Distance (_d_)** and **Velocity (_v_)**. 4. Formula: \( t = \frac{d}{v} \) **Calculation:** \[ t = \frac{400\, \text{m}}{8\, \text{m/s}} = 50\, \text{seconds} \] #### Example 3: Finding Distance **Problem:** If a motorcycle is moving at a velocity of 60 miles per hour for 2.5 hours, how far does it travel? **Using the Triangle:** 1. Identify the unknown: **Distance (_d_)** 2. Cover **_d_** in the triangle. 3. The remaining variables are **Velocity (_v_)** and **Time (_t_)**. 4. Formula: \( d = v \times t \) **Calculation:** \[ d = 60\, \text{mph} \times 2.5\, \text{hrs} = 150\, \text{miles} \] ## Benefits of Using the Triangle - **Quick Reference:** Instantly recall formulas without memorizing each one separately. - **Error Reduction:** Minimizes mistakes by clearly showing relationships between variables. - **Problem-Solving Efficiency:** Speeds up the process of determining which formula to use in various scenarios. ## Tips for Effective Use - **Practice:** Regularly use the triangle in different problems to become familiar with its application. - **Customize if Needed:** Some prefer different orientations or labels; adapt the triangle to what makes the most sense to you. - **Pair with Units:** Always keep track of units (e.g., meters, seconds, kilometers) to ensure consistency in calculations. ## Conclusion The velocity-distance-time triangle is a simple yet powerful tool to aid in solving motion-related problems. By visualizing the relationships between velocity, distance, and time, you can streamline your problem-solving process and enhance your understanding of kinematic concepts. If you have any specific questions or need further examples, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To set up the velocity-distance-time triangle, start by drawing an equilateral triangle. At the top of the triangle, label it "v" for velocity. On the bottom left corner, write "d" for distance, and on the bottom right corner, mark "t" for time. This arrangement visually illustrates the relationship: \( d = v \cdot t \), or rearranging it, \( v = \frac{d}{t} \) and \( t = \frac{d}{v} \). Now, whenever you need to find one variable, just cover the one you don’t need, and the other two will guide you! Understanding this triangle can be super handy in real-life situations, like planning a road trip. For instance, if you know you're traveling 300 kilometers at an average speed of 60 km/h, you can quickly calculate how long your journey will take. Just cover the "t" and use the formula \( t = \frac{d}{v} \). In this case, it’s 5 hours! So, grab your snacks and enjoy the ride!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad