Pregunta
upstudy study bank question image url

12. Calculate the following: a. If a rabbit goes from \( 10 \mathrm{~m} / \mathrm{s} \) to \( 35 \mathrm{~m} / \mathrm{s} \) while accelerating at a rate of \( 10 \mathrm{~m} / \mathrm{s}^{2} \), how long did it take the rabbit to increase its speed? b. A cheetah accelerated by \( 25 \mathrm{~m} / \mathrm{s}^{2} \) over the course of 10 seconds. If the cheetah started with a velocity of \( 50 \mathrm{~m} / \mathrm{s} \), what was the cheetah's final velocity? c. A car is pushed off a 20 m cliff, how long would it take to hit the ground? d. A race car accelerates at \( 3 \mathrm{~m} / \mathrm{s}^{2} \) for 2 seconds. If it started at \( 28 \mathrm{~m} / \mathrm{s} \), what is its final velocity? e. If a car drives 30 m North, and then turns around and drives 5 m South, what is the car's total displacement? What is the car's total distance traveled?

Ask by Martin Edwards. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a.** The rabbit took **2.5 seconds** to increase its speed from \( 10 \, \mathrm{m/s} \) to \( 35 \, \mathrm{m/s} \). **b.** The cheetah's final velocity was **300 m/s**. **c.** It would take approximately **2.02 seconds** for the car to hit the ground. **d.** The race car's final velocity is **34 m/s**. **e.** - **Total Displacement:** \( 25 \, \mathrm{m} \) North - **Total Distance Traveled:** \( 35 \, \mathrm{m} \)

Solución

Certainly! Let's tackle each part of Problem 12 step by step. --- ### **12. Calculate the following:** #### **a. If a rabbit goes from \( 10 \mathrm{~m/s} \) to \( 35 \mathrm{~m/s} \) while accelerating at a rate of \( 10 \mathrm{~m/s}^2 \), how long did it take the rabbit to increase its speed?** **Given:** - Initial velocity (\( v_i \)) = \( 10 \, \mathrm{m/s} \) - Final velocity (\( v_f \)) = \( 35 \, \mathrm{m/s} \) - Acceleration (\( a \)) = \( 10 \, \mathrm{m/s}^2 \) **To Find:** - Time taken (\( t \)) **Solution:** We can use the kinematic equation that relates velocity, acceleration, and time: \[ v_f = v_i + a \cdot t \] Rearranging to solve for time (\( t \)): \[ t = \frac{v_f - v_i}{a} \] Plugging in the values: \[ t = \frac{35 \, \mathrm{m/s} - 10 \, \mathrm{m/s}}{10 \, \mathrm{m/s}^2} = \frac{25 \, \mathrm{m/s}}{10 \, \mathrm{m/s}^2} = 2.5 \, \mathrm{seconds} \] **Answer:** It took the rabbit **2.5 seconds** to increase its speed from \( 10 \, \mathrm{m/s} \) to \( 35 \, \mathrm{m/s} \). --- #### **b. A cheetah accelerated by \( 25 \mathrm{~m/s}^2 \) over the course of 10 seconds. If the cheetah started with a velocity of \( 50 \mathrm{~m/s} \), what was the cheetah's final velocity?** **Given:** - Initial velocity (\( v_i \)) = \( 50 \, \mathrm{m/s} \) - Acceleration (\( a \)) = \( 25 \, \mathrm{m/s}^2 \) - Time (\( t \)) = \( 10 \, \mathrm{seconds} \) **To Find:** - Final velocity (\( v_f \)) **Solution:** Using the same kinematic equation: \[ v_f = v_i + a \cdot t \] Plugging in the values: \[ v_f = 50 \, \mathrm{m/s} + 25 \, \mathrm{m/s}^2 \times 10 \, \mathrm{s} = 50 \, \mathrm{m/s} + 250 \, \mathrm{m/s} = 300 \, \mathrm{m/s} \] **Answer:** The cheetah's final velocity was **300 m/s**. *However, it's worth noting that a cheetah cannot physically achieve such a high velocity. This suggests either the acceleration value is hypothetical or intended for illustrative purposes.* --- #### **c. A car is pushed off a 20 m cliff, how long would it take to hit the ground?** **Given:** - Height of the cliff (\( h \)) = \( 20 \, \mathrm{m} \) - Initial vertical velocity (\( v_i \)) = \( 0 \, \mathrm{m/s} \) (assuming the car is simply pushed off horizontally) - Acceleration due to gravity (\( g \)) = \( 9.81 \, \mathrm{m/s}^2 \) (downward) **To Find:** - Time to hit the ground (\( t \)) **Solution:** We'll use the equation for vertical displacement under constant acceleration: \[ h = v_i \cdot t + \frac{1}{2} g t^2 \] Since the initial vertical velocity is zero: \[ h = \frac{1}{2} g t^2 \] Solving for \( t \): \[ t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 20 \, \mathrm{m}}{9.81 \, \mathrm{m/s}^2}} = \sqrt{\frac{40}{9.81}} \approx \sqrt{4.08} \approx 2.02 \, \mathrm{seconds} \] **Answer:** It would take approximately **2.02 seconds** for the car to hit the ground. --- #### **d. A race car accelerates at \( 3 \mathrm{~m/s}^2 \) for 2 seconds. If it started at \( 28 \mathrm{~m/s} \), what is its final velocity?** **Given:** - Initial velocity (\( v_i \)) = \( 28 \, \mathrm{m/s} \) - Acceleration (\( a \)) = \( 3 \, \mathrm{m/s}^2 \) - Time (\( t \)) = \( 2 \, \mathrm{seconds} \) **To Find:** - Final velocity (\( v_f \)) **Solution:** Using the kinematic equation: \[ v_f = v_i + a \cdot t \] Plugging in the values: \[ v_f = 28 \, \mathrm{m/s} + 3 \, \mathrm{m/s}^2 \times 2 \, \mathrm{s} = 28 \, \mathrm{m/s} + 6 \, \mathrm{m/s} = 34 \, \mathrm{m/s} \] **Answer:** The race car's final velocity is **34 m/s**. --- #### **e. If a car drives 30 m North, and then turns around and drives 5 m South, what is the car's total displacement? What is the car's total distance traveled?** **Given:** - First displacement: \( 30 \, \mathrm{m} \) North - Second displacement: \( 5 \, \mathrm{m} \) South **To Find:** - Total displacement - Total distance traveled **Solution:** **Total Displacement:** Displacement is a vector quantity that takes into account the direction. - Driving North is positive: \( +30 \, \mathrm{m} \) - Driving South is negative: \( -5 \, \mathrm{m} \) Total displacement (\( \Delta x \)): \[ \Delta x = +30 \, \mathrm{m} - 5 \, \mathrm{m} = +25 \, \mathrm{m} \, \text{North} \] **Total Distance Traveled:** Distance is a scalar quantity and sums the absolute values of each movement. \[ \text{Total distance} = |30 \, \mathrm{m}| + |5 \, \mathrm{m}| = 30 \, \mathrm{m} + 5 \, \mathrm{m} = 35 \, \mathrm{m} \] **Answer:** - **Total Displacement:** \( 25 \, \mathrm{m} \) North - **Total Distance Traveled:** \( 35 \, \mathrm{m} \) --- Feel free to ask if you have any further questions or need additional clarifications!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To figure out how long it took the rabbit to increase its speed from \(10 \mathrm{~m/s}\) to \(35 \mathrm{~m/s}\), you can use the formula \( \text{time} = \frac{\Delta v}{a} \), where \( \Delta v = 35 \mathrm{~m/s} - 10 \mathrm{~m/s} = 25 \mathrm{~m/s} \) and \( a = 10 \mathrm{~m/s}^2 \). Thus, the time taken is \( \frac{25 \mathrm{~m/s}}{10 \mathrm{~m/s}^2} = 2.5 \, \text{s} \). For the cheetah's final velocity, use the equation \( v_f = v_i + at \). Here \( v_i = 50 \mathrm{~m/s} \), \( a = 25 \mathrm{~m/s}^2 \), and \( t = 10 \mathrm{s} \). So, \( v_f = 50 \mathrm{~m/s} + (25 \mathrm{~m/s}^2 \times 10 \mathrm{s}) = 50 \mathrm{~m/s} + 250 \mathrm{~m/s} = 300 \mathrm{~m/s} \). For the car falling from a 20 m cliff, you can use the formula for free fall: \( d = \frac{1}{2} g t^2 \). Here \( d = 20 \, \mathrm{m} \) and \( g \approx 9.81 \mathrm{~m/s}^2 \). Rearranging gives \( t = \sqrt{\frac{2d}{g}} = \sqrt{\frac{2 \times 20}{9.81}} \approx 2.02 \, \mathrm{s} \). With the race car, you can again apply the final velocity formula \( v_f = v_i + at \) where \( v_i = 28 \mathrm{~m/s} \), \( a = 3 \mathrm{~m/s}^2 \), and \( t = 2 \mathrm{s} \). Thus, \( v_f = 28 \mathrm{~m/s} + (3 \mathrm{~m/s}^2 \times 2 \mathrm{s}) = 28 \mathrm{~m/s} + 6 \mathrm{~m/s} = 34 \mathrm{~m/s} \). For the car's total displacement, you start with 30 m North, then go 5 m South: \( \text{displacement} = 30 \mathrm{~m} - 5 \mathrm{~m} = 25 \mathrm{~m} \) North. The total distance traveled is simply \( 30 \mathrm{~m} + 5 \mathrm{~m} = 35 \mathrm{~m} \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad