Responder
**a.** The rabbit took **2.5 seconds** to increase its speed from \( 10 \, \mathrm{m/s} \) to \( 35 \, \mathrm{m/s} \).
**b.** The cheetah's final velocity was **300 m/s**.
**c.** It would take approximately **2.02 seconds** for the car to hit the ground.
**d.** The race car's final velocity is **34 m/s**.
**e.**
- **Total Displacement:** \( 25 \, \mathrm{m} \) North
- **Total Distance Traveled:** \( 35 \, \mathrm{m} \)
Solución
Certainly! Let's tackle each part of Problem 12 step by step.
---
### **12. Calculate the following:**
#### **a. If a rabbit goes from \( 10 \mathrm{~m/s} \) to \( 35 \mathrm{~m/s} \) while accelerating at a rate of \( 10 \mathrm{~m/s}^2 \), how long did it take the rabbit to increase its speed?**
**Given:**
- Initial velocity (\( v_i \)) = \( 10 \, \mathrm{m/s} \)
- Final velocity (\( v_f \)) = \( 35 \, \mathrm{m/s} \)
- Acceleration (\( a \)) = \( 10 \, \mathrm{m/s}^2 \)
**To Find:**
- Time taken (\( t \))
**Solution:**
We can use the kinematic equation that relates velocity, acceleration, and time:
\[
v_f = v_i + a \cdot t
\]
Rearranging to solve for time (\( t \)):
\[
t = \frac{v_f - v_i}{a}
\]
Plugging in the values:
\[
t = \frac{35 \, \mathrm{m/s} - 10 \, \mathrm{m/s}}{10 \, \mathrm{m/s}^2} = \frac{25 \, \mathrm{m/s}}{10 \, \mathrm{m/s}^2} = 2.5 \, \mathrm{seconds}
\]
**Answer:**
It took the rabbit **2.5 seconds** to increase its speed from \( 10 \, \mathrm{m/s} \) to \( 35 \, \mathrm{m/s} \).
---
#### **b. A cheetah accelerated by \( 25 \mathrm{~m/s}^2 \) over the course of 10 seconds. If the cheetah started with a velocity of \( 50 \mathrm{~m/s} \), what was the cheetah's final velocity?**
**Given:**
- Initial velocity (\( v_i \)) = \( 50 \, \mathrm{m/s} \)
- Acceleration (\( a \)) = \( 25 \, \mathrm{m/s}^2 \)
- Time (\( t \)) = \( 10 \, \mathrm{seconds} \)
**To Find:**
- Final velocity (\( v_f \))
**Solution:**
Using the same kinematic equation:
\[
v_f = v_i + a \cdot t
\]
Plugging in the values:
\[
v_f = 50 \, \mathrm{m/s} + 25 \, \mathrm{m/s}^2 \times 10 \, \mathrm{s} = 50 \, \mathrm{m/s} + 250 \, \mathrm{m/s} = 300 \, \mathrm{m/s}
\]
**Answer:**
The cheetah's final velocity was **300 m/s**.
*However, it's worth noting that a cheetah cannot physically achieve such a high velocity. This suggests either the acceleration value is hypothetical or intended for illustrative purposes.*
---
#### **c. A car is pushed off a 20 m cliff, how long would it take to hit the ground?**
**Given:**
- Height of the cliff (\( h \)) = \( 20 \, \mathrm{m} \)
- Initial vertical velocity (\( v_i \)) = \( 0 \, \mathrm{m/s} \) (assuming the car is simply pushed off horizontally)
- Acceleration due to gravity (\( g \)) = \( 9.81 \, \mathrm{m/s}^2 \) (downward)
**To Find:**
- Time to hit the ground (\( t \))
**Solution:**
We'll use the equation for vertical displacement under constant acceleration:
\[
h = v_i \cdot t + \frac{1}{2} g t^2
\]
Since the initial vertical velocity is zero:
\[
h = \frac{1}{2} g t^2
\]
Solving for \( t \):
\[
t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 20 \, \mathrm{m}}{9.81 \, \mathrm{m/s}^2}} = \sqrt{\frac{40}{9.81}} \approx \sqrt{4.08} \approx 2.02 \, \mathrm{seconds}
\]
**Answer:**
It would take approximately **2.02 seconds** for the car to hit the ground.
---
#### **d. A race car accelerates at \( 3 \mathrm{~m/s}^2 \) for 2 seconds. If it started at \( 28 \mathrm{~m/s} \), what is its final velocity?**
**Given:**
- Initial velocity (\( v_i \)) = \( 28 \, \mathrm{m/s} \)
- Acceleration (\( a \)) = \( 3 \, \mathrm{m/s}^2 \)
- Time (\( t \)) = \( 2 \, \mathrm{seconds} \)
**To Find:**
- Final velocity (\( v_f \))
**Solution:**
Using the kinematic equation:
\[
v_f = v_i + a \cdot t
\]
Plugging in the values:
\[
v_f = 28 \, \mathrm{m/s} + 3 \, \mathrm{m/s}^2 \times 2 \, \mathrm{s} = 28 \, \mathrm{m/s} + 6 \, \mathrm{m/s} = 34 \, \mathrm{m/s}
\]
**Answer:**
The race car's final velocity is **34 m/s**.
---
#### **e. If a car drives 30 m North, and then turns around and drives 5 m South, what is the car's total displacement? What is the car's total distance traveled?**
**Given:**
- First displacement: \( 30 \, \mathrm{m} \) North
- Second displacement: \( 5 \, \mathrm{m} \) South
**To Find:**
- Total displacement
- Total distance traveled
**Solution:**
**Total Displacement:**
Displacement is a vector quantity that takes into account the direction.
- Driving North is positive: \( +30 \, \mathrm{m} \)
- Driving South is negative: \( -5 \, \mathrm{m} \)
Total displacement (\( \Delta x \)):
\[
\Delta x = +30 \, \mathrm{m} - 5 \, \mathrm{m} = +25 \, \mathrm{m} \, \text{North}
\]
**Total Distance Traveled:**
Distance is a scalar quantity and sums the absolute values of each movement.
\[
\text{Total distance} = |30 \, \mathrm{m}| + |5 \, \mathrm{m}| = 30 \, \mathrm{m} + 5 \, \mathrm{m} = 35 \, \mathrm{m}
\]
**Answer:**
- **Total Displacement:** \( 25 \, \mathrm{m} \) North
- **Total Distance Traveled:** \( 35 \, \mathrm{m} \)
---
Feel free to ask if you have any further questions or need additional clarifications!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución