Pregunta
upstudy study bank question image url

4. A carpenter has several boards of equal length. He cuts \( \frac{3}{5} \) of each board. After cutting the boards, the carpenter notices that he has enough pieces left over to make up the same length as 4 of the original boards. How many boards did the carpenter start with?

Ask by Guzman Harris. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The carpenter started with 10 boards.

Solución

Let's break down the problem step by step: 1. **Initial Setup:** - Let \( L \) be the length of each board. - Suppose the carpenter starts with \( N \) boards. 2. **Cutting the Boards:** - He cuts \( \frac{3}{5} \) of each board, which means he removes a length of \( \frac{3}{5}L \) from each board. - The leftover piece from each board is \( L - \frac{3}{5}L = \frac{2}{5}L \). 3. **Total Leftover Length:** - Since there are \( N \) boards, the total leftover length is \( N \times \frac{2}{5}L \). 4. **Given Condition:** - The total leftover length is equal to the length of 4 original boards, which is \( 4L \). - Therefore, \( N \times \frac{2}{5}L = 4L \). 5. **Solving for \( N \):** \[ N \times \frac{2}{5}L = 4L \\ N \times \frac{2}{5} = 4 \\ N = 4 \times \frac{5}{2} \\ N = 10 \] So, the carpenter started with **10 boards**. **Answer:** 10

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's denote the length of each board as \( L \) and the number of boards the carpenter starts with as \( n \). After cutting \( \frac{3}{5} \) of each board, the length of the remaining piece of one board is: \[ L - \frac{3}{5}L = \frac{2}{5}L \] The total length of the remaining pieces from all \( n \) boards is: \[ n \times \frac{2}{5}L = \frac{2n}{5}L \] According to the problem, this total length is equal to the length of 4 original boards: \[ \frac{2n}{5}L = 4L \] To solve for \( n \), we can divide both sides by \( L \) (assuming \( L \neq 0 \)): \[ \frac{2n}{5} = 4 \] Next, multiply both sides by \( 5 \) to eliminate the fraction: \[ 2n = 20 \] Now, divide by \( 2 \): \[ n = 10 \] Thus, the carpenter started with **10 boards**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad