A single-core cable has a designed current of 12 A and voltage drop of \( 24 \mathrm{mV} / \mathrm{A} / \mathrm{m} \). If a maximum voltage drop of \( 3.5 \% \) is allowed, find what is the longest cable can be used if the supply is at 230 V ? 27.951 m 279.5 m 798.6 m 2795.18 m
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the longest cable length allowed, we first calculate the maximum permissible voltage drop. The maximum voltage drop can be found using the formula: \[ \text{Maximum Voltage Drop} = \text{Supply Voltage} \times \text{Percentage Drop} \] \[ = 230 \, V \times 0.035 = 8.05 \, V \] Next, we use the voltage drop per unit length to find the maximum length of the cable. The total voltage drop over the length of the cable can be described as: \[ \text{Voltage Drop} = \text{Current} \times \text{Voltage Drop per unit length} \times \text{Length} \] \[ 8.05 \, V = 12 \, A \times 0.024 \, \frac{V}{A \cdot m} \times L \] Rearranging to solve for \( L \): \[ L = \frac{8.05 \, V}{12 \, A \times 0.024 \, \frac{V}{A \cdot m}} \] \[ = \frac{8.05}{0.288} \approx 27.95 \, m \] Thus, the longest cable that can be used while keeping within the specified voltage drop is approximately **27.951 m**.