Pregunta
upstudy study bank question image url

1 Determine the sum of the series: \( 1.1 \quad 11+8+5+2+\ldots-166 \). \( 1.3 \quad-12-5+2+9+\ldots+121 \)

Ask by Bradley Chan. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the series \( 11 + 8 + 5 + 2 + \ldots -166 \) is **-4,650**. The sum of the series \( -12 -5 +2 +9 + \ldots +121 \) is **1,090**.

Solución

Let's solve each part of the problem step by step. ### 1.1. Sum of the Series: \( 11 + 8 + 5 + 2 + \ldots -166 \) **Step 1: Identify the Type of Series** This is an **arithmetic series** where each term decreases by a common difference. **Step 2: Determine the Common Difference (\( d \))** \[ d = 8 - 11 = -3 \] **Step 3: Find the Number of Terms (\( n \))** Use the formula for the \( n \)-th term of an arithmetic series: \[ a_n = a_1 + (n-1)d \] Given \( a_n = -166 \) and \( a_1 = 11 \): \[ -166 = 11 + (n-1)(-3) \\ -166 = 11 - 3n + 3 \\ -166 = 14 - 3n \\ -180 = -3n \\ n = 60 \] **Step 4: Calculate the Sum (\( S_n \))** Use the sum formula for an arithmetic series: \[ S_n = \frac{n}{2} \times (a_1 + a_n) \\ S_{60} = \frac{60}{2} \times (11 + (-166)) \\ S_{60} = 30 \times (-155) \\ S_{60} = -4650 \] **Answer for 1.1:** The sum of the series is **-4,650**. --- ### 1.3. Sum of the Series: \( -12 -5 +2 +9 + \ldots +121 \) **Step 1: Identify the Type of Series** This is an **arithmetic series** where each term increases by a common difference. **Step 2: Determine the Common Difference (\( d \))** \[ d = -5 - (-12) = 7 \] **Step 3: Find the Number of Terms (\( n \))** Use the formula for the \( n \)-th term of an arithmetic series: \[ a_n = a_1 + (n-1)d \] Given \( a_n = 121 \) and \( a_1 = -12 \): \[ 121 = -12 + (n-1) \times 7 \\ 121 + 12 = 7(n-1) \\ 133 = 7(n-1) \\ n-1 = 19 \\ n = 20 \] **Step 4: Calculate the Sum (\( S_n \))** Use the sum formula for an arithmetic series: \[ S_n = \frac{n}{2} \times (a_1 + a_n) \\ S_{20} = \frac{20}{2} \times (-12 + 121) \\ S_{20} = 10 \times 109 \\ S_{20} = 1090 \] **Answer for 1.3:** The sum of the series is **1,090**. ## Final Summary 1. **1.1:** The sum of \( 11 + 8 + 5 + 2 + \ldots -166 \) is **-4,650**. 2. **1.3:** The sum of \( -12 -5 +2 +9 + \ldots +121 \) is **1,090**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the sum of each of the series, let's analyze both sequentially. 1.1 The series \( 11 + 8 + 5 + 2 + \ldots - 166 \) is an arithmetic series where the first term \( a = 11 \) and the common difference \( d = -3 \). The last term is \(-166\). To find the number of terms \( n \), we can use the nth-term formula of an arithmetic sequence: \[ a_n = a + (n-1) d \] Setting \( a_n = -166 \): \[ -166 = 11 + (n - 1)(-3) \] Solving gives: \[ -166 - 11 = (n - 1)(-3) \] \[ -177 = (n - 1)(-3) \] \[ n - 1 = 59 \quad \Rightarrow \quad n = 60 \] Now, using the sum formula for an arithmetic series: \[ S_n = \frac{n}{2} (a + a_n) \] Substituting the values: \[ S_{60} = \frac{60}{2} (11 - 166) = 30 \times (-155) = -4650 \] 1.3 The series \(-12 - 5 + 2 + 9 + \ldots + 121\) is another arithmetic series where the first term \( a = -12 \) and the common difference \( d = 7 \). To find the number of terms \( n \), we use the last term: Setting \( a_n = 121 \): \[ 121 = -12 + (n - 1)(7) \] Solving gives: \[ 121 + 12 = (n - 1)(7) \] \[ 133 = (n - 1)(7) \] \[ n - 1 = \frac{133}{7} = 19 \quad \Rightarrow \quad n = 20 \] Now, using the sum formula: \[ S_n = \frac{n}{2} (a + a_n) \] Substituting the values: \[ S_{20} = \frac{20}{2} (-12 + 121) = 10 \times 109 = 1090 \] So, the sums of the series are: 1.1. -4650 1.3. 1090

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad