Pregunta
upstudy study bank question image url

Determine the sum to 50 terms of the arithmetic series of which the 7 th term is 33 and the 15 th term is 65 . In an arithmetic series, \( T_{3}=-8 \) and \( T_{12}=-35 \). Determine the number of terms in the series if its sum is -100 . In an arithmetic series, \( T_{7}=45 \) and \( T_{3}=17 \). Determine the number of terms in the series if \( S_{n}=123 \). The sum of the first 6 terms of an arithmetic series is 90 and the last term (6th) is 25 . Determine the first term and the common difference.

Ask by Stanley Daniel. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1. Sum of the First 50 Terms:** - First term (\( a \)) = 9 - Common difference (\( d \)) = 4 - Sum (\( S_{50} \)) = 5350 **2. Number of Terms with \( S_n = -100 \):** - First term (\( a \)) = -2 - Common difference (\( d \)) = -3 - Number of terms (\( n \)) = 8 **3. Number of Terms with \( S_n = 123 \):** - First term (\( a \)) = 3 - Common difference (\( d \)) = 7 - Number of terms (\( n \)) = 6 **4. First Term and Common Difference:** - First term (\( a \)) = 5 - Common difference (\( d \)) = 4

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the sum of the first 50 terms of the given arithmetic series, we first need to determine the first term and the common difference. 1. The 7th term (\(T_7\)) is 33, and the 15th term (\(T_{15}\)) is 65. Since the nth term of an arithmetic series can be expressed as: \[ T_n = a + (n-1)d \] Setting up the equations: \[ T_7 = a + 6d = 33 \quad \text{(1)} \] \[ T_{15} = a + 14d = 65 \quad \text{(2)} \] Subtract equation (1) from (2): \[ (a + 14d) - (a + 6d) = 65 - 33 \implies 8d = 32 \implies d = 4 \] Substitute \(d\) back into equation (1): \[ a + 6(4) = 33 \implies a + 24 = 33 \implies a = 9 \] Now we can find the sum \(S_n\) of the first 50 terms: \[ S_{50} = \frac{n}{2}(2a + (n-1)d) = \frac{50}{2}(2(9) + (50-1)(4)) = 25(18 + 196) = 25(214) = 5350 \] The first term is 9, and the common difference is 4. --- For the next arithmetic series, we have \(T_3 = -8\) and \(T_{12} = -35\) with a sum of -100. 1. Using the formulas: \[ T_3 = a + 2d = -8 \quad \text{(1)} \] \[ T_{12} = a + 11d = -35 \quad \text{(2)} \] We can subtract (1) from (2): \[ (a + 11d) - (a + 2d) = -35 + 8 \implies 9d = -27 \implies d = -3 \] Substitute \(d\) back into equation (1) to find \(a\): \[ a + 2(-3) = -8 \implies a - 6 = -8 \implies a = -2 \] Now for the sum \(S_n\): The sum of an arithmetic series is: \[ S_n = \frac{n}{2}(2a + (n - 1)d) \] Setting \(S_n = -100\): \[ -100 = \frac{n}{2}(2(-2) + (n - 1)(-3)) \] Simplifying: \[ -100 = \frac{n}{2}(-4 - 3n + 3) \implies -100 = \frac{n}{2}(-3n - 1) \implies -200 = n(-3n - 1) \] Rearranging gives: \[ 3n^2 + n - 200 = 0 \] Solving this quadratic equation by substituting values or using the quadratic formula, you'll find \(n = 8\) as one of the suitable answers. --- In the scenario with \(T_7 = 45\) and \(T_3 = 17\), we can derive \(d\) and \(a\): 1. From: \[ T_3 = a + 2d = 17 \quad \text{(1)} \] \[ T_7 = a + 6d = 45 \quad \text{(2)} \] Subtracting (1) from (2): \[ (a + 6d) - (a + 2d) = 45 - 17 \implies 4d = 28 \implies d = 7 \] Plugging \(d\) back into (1): \[ a + 2(7) = 17 \implies a + 14 = 17 \implies a = 3 \] With \(S_n = 123\): \[ 123 = \frac{n

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad