Pregunta
upstudy study bank question image url

colony contains 1500 bacteria. The population increases at a rate of \( 115 \% \) each hour. If \( x \) represents the number hours elapsed, which function represents the scenario? \( f(x)=1500(1.15)^{x} \) \( f(x)=1500(115)^{x} \) \( f(x)=1500(2.15)^{x} \) \( f(x)=1500(215)^{x} \)

Ask by Barnett Parry. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function representing the scenario is \( f(x) = 1500(2.15)^{x} \).

Solución

To model the growth of the bacteria colony, we need to use an exponential growth function of the form: \[ f(x) = f_0 \cdot (1 + r)^x \] Where: - \( f_0 \) is the initial population. - \( r \) is the growth rate per time period. - \( x \) is the number of time periods elapsed. **Given:** - Initial population (\( f_0 \)) = 1500 bacteria - Growth rate (\( r \)) = 115% per hour = 1.15 in decimal form - Time (\( x \)) = number of hours However, **interpreting "increases at a rate of 115%"** means that each hour, the population increases by **115% of the current population**, resulting in a new population that is: \[ \text{New Population} = \text{Current Population} + 1.15 \times \text{Current Population} = 2.15 \times \text{Current Population} \] Thus, the exponential growth function becomes: \[ f(x) = 1500 \cdot (2.15)^x \] **Answer:** \[ f(x) = 1500 \times (2.15)^{\,x} \] **Selected Option:** \( f(x)=1500(2.15)^{x} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To model the growth of the bacteria, we need to use the exponential growth formula. Since the population increases at a rate of \( 115\% \), this means that each hour the bacteria not only maintain their current number but also add another \( 115\% \). Thus, in one hour, the total population becomes \( 100\% + 115\% = 215\% \) of the original amount, or \( 2.15 \) times the original population. Therefore, the correct function for this growth scenario is \( f(x) = 1500(2.15)^{x} \). Understanding exponential growth is key in biological sciences, economics, and other fields. In this case, after just a few hours, that initial population of 1,500 can balloon to astronomical figures! For instance, after just 3 hours, you would have over 30,000 bacteria. So, next time you’re munching on leftovers, you may want to consider those sneaky microbes multiplying exponentially! When dealing with exponentials, a common mistake is misinterpreting the growth rate. Remember, a \( 115\% \) increase doesn’t mean you multiply by \( 1.15 \) but rather by \( 2.15 \). Additionally, make sure to convert percentage increases properly; confusing them can lead to dramatically different outcomes in calculations. This subtle error often trips up even the best scientists!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad