Pregunta
upstudy study bank question image url

ball is thrown upward at \( 20 \mathrm{~m} \cdot \mathrm{~s}^{-1} \) off the top of a building that is 12 m high. What is the height of the ball above the ground at its highest point? How long does it take the ball to reach its highest point? What is the total time taken for the ball to reach the ground after leaving the person's hand?

Ask by Mcfarlane Evans. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Highest Point Height:** Approximately 32.4 meters above the ground. - **Time to Reach Highest Point:** Approximately 2.04 seconds. - **Total Time to Reach the Ground:** Approximately 4.61 seconds.

Solución

Let's analyze the problem step-by-step using the kinematic equations of motion. We'll assume the acceleration due to gravity \( g = 9.8 \, \text{m/s}^2 \) acting downward. ### Given: - **Initial velocity (\( u \))**: \( 20 \, \text{m/s} \) (upward) - **Height of the building (\( h_{\text{building}} \))**: \( 12 \, \text{m} \) - **Acceleration due to gravity (\( a \))**: \( -9.8 \, \text{m/s}^2 \) (negative since it's downward) --- ### 1. **Height of the Ball at Its Highest Point** At the highest point, the vertical velocity (\( v \)) becomes zero. We can use the following kinematic equation to find the displacement (\( s \)) from the initial position (top of the building) to the highest point: \[ v^2 = u^2 + 2a s \] Plugging in the known values: \[ 0 = (20)^2 + 2(-9.8)s \\ 0 = 400 - 19.6s \\ 19.6s = 400 \\ s = \frac{400}{19.6} \approx 20.41 \, \text{m} \] **Total height above the ground:** \[ h_{\text{total}} = h_{\text{building}} + s = 12 \, \text{m} + 20.41 \, \text{m} \approx 32.41 \, \text{m} \] **Rounded Answer:** Approximately **32.4 meters** above the ground. --- ### 2. **Time to Reach the Highest Point** We'll use the equation: \[ v = u + a t \] Setting \( v = 0 \) at the highest point: \[ 0 = 20 - 9.8t \\ 9.8t = 20 \\ t = \frac{20}{9.8} \approx 2.04 \, \text{seconds} \] **Rounded Answer:** Approximately **2.04 seconds** to reach the highest point. --- ### 3. **Total Time to Reach the Ground** To find the total time from the moment the ball is thrown until it hits the ground, we'll consider the entire motion: upwards to the highest point and then downwards to the ground. Use the displacement equation, where the final displacement (\( s \)) is \( -12 \, \text{m} \) (since it ends 12 meters below the starting point): \[ s = ut + \frac{1}{2} a t^2 \\ -12 = 20t - 4.9t^2 \\ 4.9t^2 - 20t - 12 = 0 \] Solving this quadratic equation for \( t \): \[ t = \frac{20 \pm \sqrt{(20)^2 - 4 \cdot 4.9 \cdot (-12)}}{2 \cdot 4.9} \\ t = \frac{20 \pm \sqrt{400 + 235.2}}{9.8} \\ t = \frac{20 \pm \sqrt{635.2}}{9.8} \\ t = \frac{20 \pm 25.2}{9.8} \] Discarding the negative root (since time cannot be negative): \[ t = \frac{45.2}{9.8} \approx 4.61 \, \text{seconds} \] **Rounded Answer:** Approximately **4.61 seconds** to reach the ground. --- ### **Summary of Answers:** 1. **Highest Point Height:** Approximately **32.4 meters** above the ground. 2. **Time to Reach Highest Point:** Approximately **2.04 seconds**. 3. **Total Time to Reach the Ground:** Approximately **4.61 seconds**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, we can break it down step-by-step! **Height at the Highest Point:** The maximum height can be calculated using the formula \( h = v^2 / (2g) \), where \( v \) is the initial velocity (20 m/s), and \( g \) is the acceleration due to gravity (approximately 9.81 m/s²). The time to reach the highest point is when the velocity becomes 0. 1. **Height at the highest point above the building:** \[ \text{Additional height} = \frac{(20)^2}{2 \times 9.81} \approx 20.4 \text{ m} \] Thus, total height above the ground: \[ \text{Total Height} = 12 \text{ m (height of the building)} + 20.4 \text{ m} \approx 32.4 \text{ m} \] **Time to Reach Highest Point:** Using the kinematic equation \( v = u + at \), where \( v \) is the final velocity (0 m/s), \( u \) is the initial velocity (20 m/s), \( a \) is the acceleration (-9.81 m/s² due to gravity), we get: \[ 0 = 20 - 9.81t \] \[ t \approx \frac{20}{9.81} \approx 2.04 \text{ seconds} \] **Total Time Taken to Reach the Ground:** The total time can be found by calculating the time to ascend to the highest point and then the time to descend from that height back to the ground. 1. **Time to descend from highest point to ground:** Use the formula for distance \( d = 0.5 g t^2 \) starting from the height of 32.4 m: \[ 32.4 = 0.5 \times 9.81 \times t^2 \] \[ t^2 \approx \frac{32.4 \times 2}{9.81} \] \[ t^2 \approx 6.61 \] \[ t \approx 2.57 \text{ seconds} \] 2. **Total time = time to rise + time to fall:** \[ \text{Total Time} = 2.04 + 2.57 \approx 4.61 \text{ seconds} \] So, the height of the ball at its highest point is approximately 32.4 m above the ground, it takes about 2.04 seconds to reach the highest point, and the total time taken to hit the ground after leaving the hand is about 4.61 seconds.

preguntas relacionadas

Latest Physics Questions

27. กำหนดให้ ความเร งโน้มถ่วงที่พื้นผิวดาวเคราะห์ A เท่ากับ 3 เมตรต่อวินาที \( { }^{2} \) ความเ งโน้มถ่วงที่พื้นคิวดาวเคราะห์ B เท่ากับ 1 เมตรต่อวินาที \( { }^{2} \) ถ้าชั่งน้ำหนักของวัง จมวล 2 กิโลกรัม บนพื้ผิวดาวเคราะพ์ทั้งสอง น้ำหนักของวัตฮุ แ ดาวดวงใด มีค่ามากกว่ากัน เส. มากกว่ากันเท่าใด 1. น้ำหนักของวัตร บนดาวเคราะห์ \( A \) มากกว่า และมากกว่า 2 นิวตัน 2. นำหนักของวัตกบาเดาวเดราะห์ A มากกว่า และมากกว่า 4 นิวตัน 3. นำหนักของวัต؟ แนดาวเตราะห์ \( B \) มากกว่า และมากกว่า 2 นิวตัน 4. น้ำหนักของวัตร นนดาวเคราะห์ \( B \) มากกว่า เะละมากกว่า 4 นิวตัน 5. น้ำหนักของวัตก บนตาวเคราะห์ A และ B เท่ากัน
Física Thailand Jan 24, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad