Pregunta
upstudy study bank question image url

4. Determine the equation of the straight line passing through the point \( (3 ; 1) \) and with an angle of \( 135^{\circ} \).

Ask by Savage Zimmerman. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -x + 4 \) or \( x + y = 4 \).

Solución

To determine the equation of the straight line passing through the point \( (3, 1) \) and making an angle of \( 135^{\circ} \) with the positive \( x \)-axis, follow these steps: 1. **Find the Slope (\( m \)) of the Line:** The slope of a line that makes an angle \( \theta \) with the positive \( x \)-axis is given by: \[ m = \tan(\theta) \] For \( \theta = 135^{\circ} \): \[ \tan(135^{\circ}) = \tan(180^{\circ} - 45^{\circ}) = -\tan(45^{\circ}) = -1 \] So, the slope \( m = -1 \). 2. **Use the Point-Slope Form of the Equation:** The point-slope form of a line passing through a point \( (x_1, y_1) \) with slope \( m \) is: \[ y - y_1 = m(x - x_1) \] Substituting \( m = -1 \) and \( (x_1, y_1) = (3, 1) \): \[ y - 1 = -1(x - 3) \] Simplifying: \[ y - 1 = -x + 3 \] \[ y = -x + 4 \] This can also be written in standard form as: \[ x + y = 4 \] **Final Answer:** \[ y = -\,x + 4 \] Alternatively, in standard form: \[ x + y = 4 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation of the line, we first determine the slope \( m \) using the angle given. The slope can be calculated as \( m = \tan(\theta) \). For an angle of \( 135^{\circ} \), the slope is \( m = \tan(135^{\circ}) = -1 \). Now, using the point-slope form of the line equation \( y - y_1 = m(x - x_1) \), where \( (x_1, y_1) \) is the point \( (3, 1) \), we can substitute our values: \[ y - 1 = -1(x - 3) \] This simplifies to: \[ y - 1 = -x + 3 \implies y = -x + 4 \] So, the equation of the line is \( y = -x + 4 \). To visualize the impact of this line, think about how lines with different slopes behave. A slope of -1 indicates a steadily descending line; here's an eye-opener for art enthusiasts: artists often use lines with such slopes to create dramatic contrasts in their compositions, highlighting emotional tension. It goes to show that math and art are more related than you might think! Next, consider the importance of angles in real-world scenarios. For example, architects might use lines at specific angles to optimize the aesthetics and functionality of a building's design. A line at \( 135^{\circ} \) can create dynamic, visually engaging spaces, while also letting in natural light from specific angles. So next time you see a building, think about how those angles play a role beyond just structure!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad