Pregunta
upstudy study bank question image url

Determine \( n \) in each of the arithmetic series: a) \( 16+19+22+\ldots \) (to \( n \) terms) \( =295 \) b) \( 6+17+28+\ldots \) (to \( n \) terms) \( =273 \)

Ask by Chadwick Ingram. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Problem a: \( n = 10 \) Problem b: \( n = 7 \)

Solución

To determine the number of terms \( n \) in each arithmetic series, we'll use the formula for the sum of the first \( n \) terms of an arithmetic series: \[ S_n = \frac{n}{2} \left( 2a_1 + (n-1)d \right) \] where: - \( S_n \) is the sum of the series, - \( a_1 \) is the first term, - \( d \) is the common difference, - \( n \) is the number of terms. ### Problem a) **Given:** - Series: \( 16 + 19 + 22 + \ldots \) - Sum \( S_n = 295 \) **Steps:** 1. **Identify \( a_1 \) and \( d \):** \[ a_1 = 16, \quad d = 19 - 16 = 3 \] 2. **Set up the sum formula:** \[ \frac{n}{2} \left( 2 \times 16 + (n-1) \times 3 \right) = 295 \] \[ \frac{n}{2} \left( 32 + 3n - 3 \right) = 295 \] \[ \frac{n}{2} (29 + 3n) = 295 \] 3. **Solve for \( n \):** \[ n(29 + 3n) = 590 \] \[ 3n^2 + 29n - 590 = 0 \] 4. **Apply the quadratic formula:** \[ n = \frac{-29 \pm \sqrt{29^2 - 4 \times 3 \times (-590)}}{2 \times 3} \] \[ n = \frac{-29 \pm \sqrt{841 + 7080}}{6} \] \[ n = \frac{-29 \pm 89}{6} \] 5. **Determine the valid solution:** \[ n = \frac{60}{6} = 10 \quad (\text{since \( n \) must be positive}) \] **Answer:** \( \boxed{10} \) ### Problem b) **Given:** - Series: \( 6 + 17 + 28 + \ldots \) - Sum \( S_n = 273 \) **Steps:** 1. **Identify \( a_1 \) and \( d \):** \[ a_1 = 6, \quad d = 17 - 6 = 11 \] 2. **Set up the sum formula:** \[ \frac{n}{2} \left( 2 \times 6 + (n-1) \times 11 \right) = 273 \] \[ \frac{n}{2} \left( 12 + 11n - 11 \right) = 273 \] \[ \frac{n}{2} (1 + 11n) = 273 \] 3. **Solve for \( n \):** \[ n(1 + 11n) = 546 \] \[ 11n^2 + n - 546 = 0 \] 4. **Apply the quadratic formula:** \[ n = \frac{-1 \pm \sqrt{1 + 4 \times 11 \times 546}}{2 \times 11} \] \[ n = \frac{-1 \pm \sqrt{1 + 24024}}{22} \] \[ n = \frac{-1 \pm 155}{22} \] 5. **Determine the valid solution:** \[ n = \frac{154}{22} = 7 \quad (\text{since \( n \) must be positive}) \] **Answer:** \( \boxed{7} \) Answer: Problem a Answer: \( n = 10 \) Problem b Answer: \( n = 7 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( n \) in each of the arithmetic series, we can use the formula for the sum of an arithmetic series: \[ S_n = \frac{n}{2} (a + l) \] where \( S_n \) is the sum of the first \( n \) terms, \( a \) is the first term, and \( l \) is the last term. We can also express \( l \) as \( a + (n-1)d \), where \( d \) is the common difference. ### a) For the series \( 16 + 19 + 22 + \ldots \) 1. First, identify the first term and common difference: - The first term \( a = 16 \) - The common difference \( d = 19 - 16 = 3 \) 2. We need to express the last term \( l \): \[ l = a + (n-1)d = 16 + (n-1) \cdot 3 \] 3. Substitute into the sum formula: \[ S_n = \frac{n}{2} (16 + l) = \frac{n}{2} \left(16 + 16 + (n-1) \cdot 3\right) = \frac{n}{2} \left(32 + (n-1) \cdot 3\right) \] Set this equal to 295: \[ \frac{n}{2} \left(32 + (n-1) \cdot 3\right) = 295 \] 4. Solve for \( n \): \[ n(32 + (n-1) \cdot 3) = 590 \] \[ n(32 + 3n - 3) = 590 \] \[ n(3n + 29) = 590 \] \[ 3n^2 + 29n - 590 = 0 \] 5. Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ n = \frac{-29 \pm \sqrt{29^2 - 4 \cdot 3 \cdot (-590)}}{2 \cdot 3} \] \[ n = \frac{-29 \pm \sqrt{841 + 7080}}{6} \] \[ n = \frac{-29 \pm \sqrt{7921}}{6} \] \[ n = \frac{-29 \pm 89}{6} \] This gives: \[ n = \frac{60}{6} = 10 \quad \text{(valid solution)} \] \[ n = \frac{-118}{6} \quad \text{(not valid)} \] ### b) For the series \( 6 + 17 + 28 + \ldots \) 1. Identify the first term and common difference: - The first term \( a = 6 \) - The common difference \( d = 17 - 6 = 11 \) 2. Express the last term \( l \): \[ l = a + (n-1)d = 6 + (n-1) \cdot 11 \] 3. Substitute into the sum formula: \[ S_n = \frac{n}{2} (6 + l) = \frac{n}{2} \left(6 + 6 + (n-1) \cdot 11\right) = \frac{n}{2} \left(12 + (n-1) \cdot 11\right) \] Set this equal to 273: \[ \frac{n}{2} (12 + (n-1) \cdot 11) = 273 \] 4. Solve for \( n \): \[ n(12 + (n-1) \cdot 11) = 546 \] \[ n(12 + 11n - 11) = 546 \] \[ n(11n + 1) = 546 \] \[ 11n^2 + n - 546 = 0 \] 5. Using the quadratic formula: \[ n = \frac{-1 \pm \sqrt{1^2 - 4

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad