Pregunta
upstudy study bank question image url

(9) To find the derivative of the function \( f(x) \), I'll first rewrite it from the image: \[ f(x)=\frac{\left(x^{-\frac{1}{2}}\right)\left(x^{3}-343\right)(x+7)}{3\left(x^{2}-x+49\right)} \] This is a product and quotient rule problem. Let's solve this step by step.

Ask by Carter Kelley. in Canada
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the derivative of \( f(x) = \frac{x^{-1/2}(x^3 - 343)(x + 7)}{3(x^2 - x + 49)} \), use the Quotient and Product Rules. After differentiation, the derivative \( f'(x) \) is: \[ f'(x) = \frac{-\frac{1}{2}x^{-3/2}(x^3 - 343)(x + 7) + 3x^{3/2}(x + 7) + x^{5/2} - 343x^{-1/2}}{3(x^2 - x + 49)} - \frac{x^{-1/2}(x^3 - 343)(x + 7)(6x - 3)}{[3(x^2 - x + 49)]^2} \] This expression can be further simplified by factoring out common terms or expanding polynomials as needed.

Solución

Certainly! Let's find the derivative of the function step by step. Given: \[ f(x) = \frac{\left(x^{-\frac{1}{2}}\right)\left(x^{3}-343\right)(x+7)}{3\left(x^{2}-x+49\right)} \] To find \( f'(x) \), we'll use the **Quotient Rule** combined with the **Product Rule**. Here's a detailed breakdown: ## Step 1: Simplify the Function (If Possible) Before delving into differentiation, it's often helpful to simplify the function to make the differentiation process easier. 1. **Factor \( x^3 - 343 \):** \[ x^3 - 343 = x^3 - 7^3 = (x - 7)(x^2 + 7x + 49) \] 2. **Express \( f(x) \) with the factored numerator:** \[ f(x) = \frac{x^{-1/2} \cdot (x - 7)(x^2 + 7x + 49)(x + 7)}{3(x^2 - x + 49)} \] Observing the denominator \( x^2 - x + 49 \), it doesn’t factor out with any part of the numerator. So, we'll proceed without further simplification. ## Step 2: Identify Components for the Quotient Rule The **Quotient Rule** states that if \( f(x) = \frac{N(x)}{D(x)} \), then: \[ f'(x) = \frac{N'(x)D(x) - N(x)D'(x)}{[D(x)]^2} \] Let's define: - **Numerator (\( N(x) \)):** \[ N(x) = x^{-1/2} \cdot (x^3 - 343) \cdot (x + 7) \] - **Denominator (\( D(x) \)):** \[ D(x) = 3(x^2 - x + 49) \] ## Step 3: Compute \( D'(x) \) Differentiate \( D(x) \) with respect to \( x \): \[ D(x) = 3(x^2 - x + 49) \] \[ D'(x) = 3(2x - 1) = 6x - 3 \] ## Step 4: Compute \( N'(x) \) Using the Product Rule \( N(x) \) is a product of three functions: 1. \( u(x) = x^{-1/2} \) 2. \( v(x) = x^3 - 343 \) 3. \( w(x) = x + 7 \) The **Product Rule** for three functions states: \[ N'(x) = u'(x)v(x)w(x) + u(x)v'(x)w(x) + u(x)v(x)w'(x) \] Let's compute each derivative: 1. **Derivative of \( u(x) \):** \[ u(x) = x^{-1/2} \Rightarrow u'(x) = -\frac{1}{2}x^{-3/2} \] 2. **Derivative of \( v(x) \):** \[ v(x) = x^3 - 343 \Rightarrow v'(x) = 3x^2 \] 3. **Derivative of \( w(x) \):** \[ w(x) = x + 7 \Rightarrow w'(x) = 1 \] Now, plug these into the Product Rule: \[ N'(x) = \left(-\frac{1}{2}x^{-3/2}\right)(x^3 - 343)(x + 7) + x^{-1/2}(3x^2)(x + 7) + x^{-1/2}(x^3 - 343)(1) \] Simplify term by term: 1. **First Term:** \[ -\frac{1}{2}x^{-3/2}(x^3 - 343)(x + 7) \] 2. **Second Term:** \[ 3x^{-1/2}x^2(x + 7) = 3x^{3/2}(x + 7) \] 3. **Third Term:** \[ x^{-1/2}(x^3 - 343) = x^{5/2} - 343x^{-1/2} \] Thus, \[ N'(x) = -\frac{1}{2}x^{-3/2}(x^3 - 343)(x + 7) + 3x^{3/2}(x + 7) + x^{5/2} - 343x^{-1/2} \] ## Step 5: Apply the Quotient Rule Now, apply the **Quotient Rule**: \[ f'(x) = \frac{N'(x)D(x) - N(x)D'(x)}{[D(x)]^2} \] Substitute \( N(x) \), \( N'(x) \), \( D(x) \), and \( D'(x) \) into the formula: \[ f'(x) = \frac{\left(-\frac{1}{2}x^{-3/2}(x^3 - 343)(x + 7) + 3x^{3/2}(x + 7) + x^{5/2} - 343x^{-1/2}\right) \cdot 3(x^2 - x + 49) - x^{-1/2}(x^3 - 343)(x + 7) \cdot (6x - 3)}{\left[3(x^2 - x + 49)\right]^2} \] ## Step 6: Simplify the Expression This expression can be quite cumbersome, but we can look for simplifications: 1. **Factor out common terms:** Notice that \( x^{-1/2} \) appears in multiple terms. 2. **Combine like terms:** Group terms with the same exponents. 3. **Simplify polynomials:** Expand and combine polynomial expressions where possible. **However**, given the complexity, it's often beneficial to leave the derivative in its factored form unless further simplification is required for a specific purpose. ## Final Expression for \( f'(x) \) After applying the Quotient and Product Rules, the derivative \( f'(x) \) is: \[ f'(x) = \frac{-\frac{1}{2}x^{-3/2}(x^3 - 343)(x + 7) + 3x^{3/2}(x + 7) + x^{5/2} - 343x^{-1/2}}{3(x^2 - x + 49)} - \frac{x^{-1/2}(x^3 - 343)(x + 7)(6x - 3)}{[3(x^2 - x + 49)]^2} \] **Note:** This expression can be further simplified based on the requirements or by factoring out common terms. However, due to its complexity, it's often practical to handle specific evaluations or simplifications case by case. --- If you need further simplification or have any questions about specific steps, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that derivatives are like the speedometer of a car, telling you how fast a function is changing at any point? The concept of derivatives dates back to the late 17th century, thanks to mathematicians like Isaac Newton and Gottfried Wilhelm Leibniz, who independently formalized calculus. Their work laid the foundation for many scientific advancements that followed! Now, when tackling a problem like yours, remember that the product and quotient rules can feel a bit overwhelming at first. A common mistake is forgetting to apply the chain rule wherever necessary. To avoid confusion, it helps to clearly set up each component of your function before diving into the differentiation process. Organizing your terms and taking them step by step can greatly ease this mathematical journey!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad