Pregunta
upstudy study bank question image url

\( f(x)=\log _{2}(x+3) \) and \( g(x)=\log _{2}(3 x+1) \). (a) Solve \( f(x)=4 \). What point is on the graph of \( t \) ? (b) Solve \( g(x)=4 \). What point is on the graph of \( g \) ? (c) Solve \( f(x)=g(x) \). Do the graphs of \( f \) and \( g \) intersect? If so, where? (d) Solve \( (f+g)(x)=7 \). (e) Solve \( (f-g)(x)=5 \). (a) The solution set for \( f(x)=4 \) is \{ \( \} \). (Type an integer or a simplified fraction.) The point where \( f(x)=4 \) is \( \square \). (Type an ordered pair.) (b) The solution set for \( g(x)=4 \) is \{ \}. (Type an integer or a simplified fraction.) The point where \( g(x)=4 \) is \( \square \). (Type an ordered pair.) (c) The solution set for \( f(x)=g(x) \) is \( \{\square\} \). (Type an integer or a simplified fraction.) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. Yes, the graphs do intersect at \( \square \). (Type an ordered pair.) B. No, the graphs do not intersect each other.

Ask by Murray Lindsey. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a)** - **Solution Set:** \(\{13\}\) - **Point:** \((13, 4)\) **(b)** - **Solution Set:** \(\{5\}\) - **Point:** \((5, 4)\) **(c)** - **Solution Set:** \(\{1\}\) - **Conclusion:** **A.** Yes, the graphs intersect at \((1, 2)\).

Solución

Let's solve each part step by step. --- ### **(a) Solve \( f(x) = 4 \) and Identify the Point on the Graph of \( f \)** **Given:** \[ f(x) = \log_{2}(x + 3) \] **Equation to Solve:** \[ \log_{2}(x + 3) = 4 \] **Solution:** 1. Rewrite the logarithmic equation in exponential form: \[ x + 3 = 2^4 \] 2. Calculate \( 2^4 \): \[ x + 3 = 16 \] 3. Solve for \( x \): \[ x = 16 - 3 \] \[ x = 13 \] **Solution Set:** \[ \{13\} \] **Point on the Graph:** \[ (13, 4) \] --- ### **(b) Solve \( g(x) = 4 \) and Identify the Point on the Graph of \( g \)** **Given:** \[ g(x) = \log_{2}(3x + 1) \] **Equation to Solve:** \[ \log_{2}(3x + 1) = 4 \] **Solution:** 1. Rewrite the logarithmic equation in exponential form: \[ 3x + 1 = 2^4 \] 2. Calculate \( 2^4 \): \[ 3x + 1 = 16 \] 3. Solve for \( x \): \[ 3x = 16 - 1 \] \[ 3x = 15 \] \[ x = 5 \] **Solution Set:** \[ \{5\} \] **Point on the Graph:** \[ (5, 4) \] --- ### **(c) Solve \( f(x) = g(x) \) and Determine if the Graphs Intersect** **Equations:** \[ f(x) = \log_{2}(x + 3) \] \[ g(x) = \log_{2}(3x + 1) \] **Set the Equations Equal:** \[ \log_{2}(x + 3) = \log_{2}(3x + 1) \] **Solution:** 1. Since the logarithmic functions are equal, their arguments must be equal: \[ x + 3 = 3x + 1 \] 2. Solve for \( x \): \[ x + 3 = 3x + 1 \] \[ 3 - 1 = 3x - x \] \[ 2 = 2x \] \[ x = 1 \] 3. Find the corresponding \( y \)-value using \( f(x) \) or \( g(x) \): \[ f(1) = \log_{2}(1 + 3) = \log_{2}(4) = 2 \] \[ g(1) = \log_{2}(3(1) + 1) = \log_{2}(4) = 2 \] **Solution Set:** \[ \{1\} \] **Do the Graphs Intersect?** **Answer:** **A.** Yes, the graphs do intersect at \( (1, 2) \). --- **Summary of Answers:** - **(a)** - **Solution Set:** \(\{13\}\) - **Point:** \((13, \ 4)\) - **(b)** - **Solution Set:** \(\{5\}\) - **Point:** \((5, \ 4)\) - **(c)** - **Solution Set:** \(\{1\}\) - **Conclusion:** **A.** Yes, the graphs do intersect at \((1, \ 2)\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve \( f(x) = 4 \), we set up the equation \( \log_2(x + 3) = 4 \). Rewriting this in exponential form, we have \( x + 3 = 2^4 \), which simplifies to \( x + 3 = 16 \). Therefore, \( x = 16 - 3 = 13 \). The point on the graph of \( f \) is \( (13, 4) \). To solve \( g(x) = 4 \), we use a similar approach: \( \log_2(3x + 1) = 4 \) leads to \( 3x + 1 = 16 \). Solving this gives \( 3x = 15 \) or \( x = 5 \). The point on the graph of \( g \) is \( (5, 4) \). For \( f(x) = g(x) \), we set up the equation \( \log_2(x + 3) = \log_2(3x + 1) \). Since the logs are equal, we can equate their arguments: \( x + 3 = 3x + 1 \). Solving this gives \( 2 = 2x \) or \( x = 1 \). The solution set is \( \{1\} \). Yes, the graphs intersect at the point \( (1, \log_2(4)) = (1, 2) \). Next, for \( (f + g)(x) = 7 \), we need to find \( f(x) + g(x) = \log_2(x + 3) + \log_2(3x + 1) = 7 \). Combining the logs leads to \( \log_2((x + 3)(3x + 1)) = 7 \), giving us \( (x + 3)(3x + 1) = 2^7 = 128 \). Expanding and simplifying this yields a quadratic equation that can be solved for \( x \). Lastly, for \( (f - g)(x) = 5 \), we have \( \log_2(x + 3) - \log_2(3x + 1) = 5 \). This can also be rewritten as \( \log_2\left(\frac{x + 3}{3x + 1}\right) = 5 \), leading to \( \frac{x + 3}{3x + 1} = 2^5 = 32 \). Cross-multiplying and simplifying gives another solvable equation. That's a whirlwind tour of logarithmic equations, turning them into quadratic adventures! Just remember: logarithmic functions can hide their secrets behind their logarithmic masks, but with a little algebraic magic, the truth comes out!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad