Consider the function \( f(x)=\sqrt{4-x} \). Find the formula for the inverse function.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the inverse function of \( f(x) = \sqrt{4 - x} \), we start by setting \( y = f(x) \). Therefore, we have: \[ y = \sqrt{4 - x} \] Next, we swap \( x \) and \( y \): \[ x = \sqrt{4 - y} \] Now, we solve for \( y \). First, we square both sides: \[ x^2 = 4 - y \] Rearranging gives us: \[ y = 4 - x^2 \] Thus, the inverse function is: \[ f^{-1}(x) = 4 - x^2 \] And remember, this inverse is only valid for \( x \) in the range that corresponds to the domain of the original function \( f \). So, the formula for the inverse function is: \[ f^{-1}(x) = 4 - x^2 \]