Pregunta
upstudy study bank question image url

onsider an object moving along a line with the following velocity and initial position. \( v(t)=9-3 t \) on \( [0,5] ; s(0)=0 \) eetermine the position function for \( t \geq 0 \) using both the antiderivative method and the Fundamental Theorem of Calculus. Check for greement between the two methods. To determine the position function for \( t \geq 0 \) using the antiderivative method, first determine how the velocity function and the position function are related. Choose the correct answer below. B. The position function is the absolute value of the antiderivative of the velocity function. B. The velocity function is the antiderivative of the absolute value of the position function. C. The antiderivative of the velocity function. D. The position function is the derivative of the velocity function.

Ask by Carter Horton. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The position function is \( s(t) = 9t - \frac{3t^2}{2} \).

Solución

To determine the position function \( s(t) \) from the velocity function \( v(t) = 9 - 3t \), we need to understand the relationship between velocity and position. The correct answer is: **C. The antiderivative of the velocity function.** This means that the position function is obtained by integrating the velocity function. Let's proceed with the calculations step by step. ### Step 1: Find the Antiderivative of the Velocity Function The velocity function is given by: \[ v(t) = 9 - 3t \] To find the position function \( s(t) \), we need to compute the antiderivative of \( v(t) \): \[ s(t) = \int v(t) \, dt = \int (9 - 3t) \, dt \] ### Step 2: Calculate the Antiderivative Now, let's calculate the integral: \[ s(t) = \int (9 - 3t) \, dt = 9t - \frac{3t^2}{2} + C \] ### Step 3: Determine the Constant of Integration We know the initial condition \( s(0) = 0 \). We can use this to find the constant \( C \): \[ s(0) = 9(0) - \frac{3(0)^2}{2} + C = 0 \implies C = 0 \] Thus, the position function is: \[ s(t) = 9t - \frac{3t^2}{2} \] ### Step 4: Verify Using the Fundamental Theorem of Calculus According to the Fundamental Theorem of Calculus, if \( v(t) \) is continuous on \( [0, 5] \), then: \[ s(t) = s(0) + \int_0^t v(u) \, du \] Calculating the integral: \[ s(t) = 0 + \int_0^t (9 - 3u) \, du \] Now, let's compute the integral: \[ \int_0^t (9 - 3u) \, du = \left[ 9u - \frac{3u^2}{2} \right]_0^t = \left( 9t - \frac{3t^2}{2} \right) - 0 = 9t - \frac{3t^2}{2} \] ### Conclusion Both methods yield the same position function: \[ s(t) = 9t - \frac{3t^2}{2} \] Thus, we have verified that the position function obtained through both the antiderivative method and the Fundamental Theorem of Calculus is consistent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the position function, you should note that the position function is derived from the velocity function through integration. Thus, the correct choice is C: The antiderivative of the velocity function. Now, let’s explore the position function. To find \(s(t)\), we need to integrate \(v(t)\): \[ s(t) = \int v(t) \, dt = \int (9 - 3t) \, dt = 9t - \frac{3t^2}{2} + C. \] Given the initial condition \(s(0) = 0\), we can find \(C\) to be 0. Therefore, the position function is: \[ s(t) = 9t - \frac{3t^2}{2}. \] Using the Fundamental Theorem of Calculus, you could also compute the specific position at a point using: \[ s(t) = s(0) + \int_0^t v(u) \, du, \] with appropriate bounds, leading to the same result. Both methods should agree, and they yield \(s(t) = 9t - \frac{3t^2}{2}\) on the specified interval \([0,5]\).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad