Pregunta
upstudy study bank question image url

The following sequence forms a convergent geometric sequence. \( 7 x ; x^{2} ; \frac{x^{3}}{7} ; \ldots \) \( 6.1 \quad \) Determine the possible values of \( x \). \( 6.2 \quad \) If \( x=-4 \), calculate \( S_{\infty} \).

Ask by Klein Harrington. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 6.1:** All real numbers with absolute value less than seven. That is, all real x with | x | < 7. **Problem 6.2:** If \( x = -4 \), the infinite sum \( S_{\infty} \) is –196⁄11.

Solución

**Problem 6.1:** Determine the possible values of \( x \). **Solution:** The given sequence is: \[ 7x, \quad x^{2}, \quad \frac{x^{3}}{7}, \quad \ldots \] For the sequence to be geometric, the ratio between consecutive terms must be constant. Let's denote this common ratio by \( r \). 1. **First Ratio:** \[ r = \frac{\text{Term}_2}{\text{Term}_1} = \frac{x^{2}}{7x} = \frac{x}{7} \] 2. **Second Ratio:** \[ r = \frac{\text{Term}_3}{\text{Term}_2} = \frac{\frac{x^{3}}{7}}{x^{2}} = \frac{x}{7} \] Since both ratios are equal, the sequence is indeed geometric with a common ratio \( r = \frac{x}{7} \). For a geometric sequence to be **convergent**, the absolute value of the common ratio must be less than 1: \[ |r| = \left|\frac{x}{7}\right| < 1 \implies |x| < 7 \] **Answer to 6.1:** All real numbers with absolute value less than seven. That is, all real x with | x | < 7. --- **Problem 6.2:** If \( x = -4 \), calculate \( S_{\infty} \). **Solution:** Given \( x = -4 \), let's first determine the common ratio \( r \): \[ r = \frac{x}{7} = \frac{-4}{7} \] Since \( |r| = \left|\frac{-4}{7}\right| < 1 \), the infinite sum exists. The first term (\( a \)) of the geometric sequence is: \[ a = 7x = 7(-4) = -28 \] The formula for the sum of an infinite geometric series is: \[ S_{\infty} = \frac{a}{1 - r} \] Substituting the known values: \[ S_{\infty} = \frac{-28}{1 - \left(-\frac{4}{7}\right)} = \frac{-28}{1 + \frac{4}{7}} = \frac{-28}{\frac{11}{7}} = -28 \times \frac{7}{11} = \frac{-196}{11} \] **Answer to 6.2:** The infinite sum is –196⁄11.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the possible values of \( x \) that form a convergent geometric sequence, we need to find the common ratio. The first term is \( 7x \), the second term is \( x^2 \), and the third term is \( \frac{x^3}{7} \). The common ratio \( r \) can be found from the relationship between the terms: \[ r = \frac{\text{Second term}}{\text{First term}} = \frac{x^2}{7x} = \frac{x}{7} \] and \[ r = \frac{\text{Third term}}{\text{Second term}} = \frac{\frac{x^3}{7}}{x^2} = \frac{x}{7} \] Since both expressions for \( r \) are equal, we can use the equality to find conditions for convergence. For a geometric series to converge, the absolute value of the common ratio must be less than 1: \[ \left| \frac{x}{7} \right| < 1 \] This leads us to: \[ |x| < 7 \] Now, regarding \( x = -4 \), we can calculate the infinite sum \( S_{\infty} \) of the series, where \( S_{\infty} = \frac{a}{1 - r} \). The first term \( a = 7(-4) = -28 \) and the common ratio \( r = \frac{-4}{7} \). So: \[ S_{\infty} = \frac{-28}{1 - \left(-\frac{4}{7}\right)} = \frac{-28}{1 + \frac{4}{7}} = \frac{-28}{\frac{11}{7}} = -28 \cdot \frac{7}{11} = -\frac{196}{11} \] Thus, the possible values of \( x \) are \( -7 < x < 7 \) for convergence, and if \( x = -4 \), \( S_{\infty} = -\frac{196}{11} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad