The following sequence forms a convergent geometric sequence. \( 7 x ; x^{2} ; \frac{x^{3}}{7} ; \ldots \) \( 6.1 \quad \) Determine the possible values of \( x \). \( 6.2 \quad \) If \( x=-4 \), calculate \( S_{\infty} \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine the possible values of \( x \) that form a convergent geometric sequence, we need to find the common ratio. The first term is \( 7x \), the second term is \( x^2 \), and the third term is \( \frac{x^3}{7} \). The common ratio \( r \) can be found from the relationship between the terms: \[ r = \frac{\text{Second term}}{\text{First term}} = \frac{x^2}{7x} = \frac{x}{7} \] and \[ r = \frac{\text{Third term}}{\text{Second term}} = \frac{\frac{x^3}{7}}{x^2} = \frac{x}{7} \] Since both expressions for \( r \) are equal, we can use the equality to find conditions for convergence. For a geometric series to converge, the absolute value of the common ratio must be less than 1: \[ \left| \frac{x}{7} \right| < 1 \] This leads us to: \[ |x| < 7 \] Now, regarding \( x = -4 \), we can calculate the infinite sum \( S_{\infty} \) of the series, where \( S_{\infty} = \frac{a}{1 - r} \). The first term \( a = 7(-4) = -28 \) and the common ratio \( r = \frac{-4}{7} \). So: \[ S_{\infty} = \frac{-28}{1 - \left(-\frac{4}{7}\right)} = \frac{-28}{1 + \frac{4}{7}} = \frac{-28}{\frac{11}{7}} = -28 \cdot \frac{7}{11} = -\frac{196}{11} \] Thus, the possible values of \( x \) are \( -7 < x < 7 \) for convergence, and if \( x = -4 \), \( S_{\infty} = -\frac{196}{11} \).