Responder
At \( t=2 \), the unit tangent vector is \( \frac{1}{3}(2 \hat{i} + 2 \hat{j} + \hat{k}) \) and the unit normal vector is \( \frac{1}{3\sqrt{5}}(2 \hat{i} + 2 \hat{k}) \).
Solución
To find the unit tangent and unit normal vectors at \( t=2 \) on the given curve defined by the parametric equations:
\[
x = t^2 - 1, \quad y = 4t - 3, \quad z = 2t^2 - 6t
\]
we will follow these steps:
1. **Find the position vector** \( \mathbf{r}(t) \).
2. **Calculate the derivative** \( \mathbf{r}'(t) \) to find the tangent vector.
3. **Normalize the tangent vector** to get the unit tangent vector \( \mathbf{T}(t) \).
4. **Find the derivative of the unit tangent vector** to get the normal vector.
5. **Normalize the normal vector** to get the unit normal vector \( \mathbf{N}(t) \).
### Step 1: Position Vector
The position vector \( \mathbf{r}(t) \) is given by:
\[
\mathbf{r}(t) = (t^2 - 1) \hat{i} + (4t - 3) \hat{j} + (2t^2 - 6t) \hat{k}
\]
### Step 2: Derivative of the Position Vector
Now, we calculate the derivative \( \mathbf{r}'(t) \):
\[
\mathbf{r}'(t) = \frac{d}{dt}[(t^2 - 1) \hat{i} + (4t - 3) \hat{j} + (2t^2 - 6t) \hat{k}]
\]
Calculating each component:
- \( \frac{d}{dt}(t^2 - 1) = 2t \)
- \( \frac{d}{dt}(4t - 3) = 4 \)
- \( \frac{d}{dt}(2t^2 - 6t) = 4t - 6 \)
Thus,
\[
\mathbf{r}'(t) = (2t) \hat{i} + (4) \hat{j} + (4t - 6) \hat{k}
\]
### Step 3: Evaluate at \( t=2 \)
Now, we evaluate \( \mathbf{r}'(2) \):
\[
\mathbf{r}'(2) = (2 \cdot 2) \hat{i} + (4) \hat{j} + (4 \cdot 2 - 6) \hat{k} = 4 \hat{i} + 4 \hat{j} + 2 \hat{k}
\]
### Step 4: Unit Tangent Vector
Next, we find the magnitude of \( \mathbf{r}'(2) \):
\[
\|\mathbf{r}'(2)\| = \sqrt{4^2 + 4^2 + 2^2} = \sqrt{16 + 16 + 4} = \sqrt{36} = 6
\]
Now, the unit tangent vector \( \mathbf{T}(2) \) is:
\[
\mathbf{T}(2) = \frac{\mathbf{r}'(2)}{\|\mathbf{r}'(2)\|} = \frac{4 \hat{i} + 4 \hat{j} + 2 \hat{k}}{6} = \frac{2}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{1}{3} \hat{k}
\]
### Step 5: Derivative of the Unit Tangent Vector
Next, we need to find the derivative of the unit tangent vector \( \mathbf{T}(t) \). We can differentiate \( \mathbf{r}'(t) \) again to find the acceleration vector \( \mathbf{r}''(t) \):
\[
\mathbf{r}''(t) = \frac{d}{dt}[(2t) \hat{i} + (4) \hat{j} + (4t - 6) \hat{k}] = (2) \hat{i} + (0) \hat{j} + (4) \hat{k}
\]
Evaluating at \( t=2 \):
\[
\mathbf{r}''(2) = 2 \hat{i} + 0 \hat{j} + 4 \hat{k}
\]
### Step 6: Unit Normal Vector
To find the unit normal vector \( \mathbf{N}(t) \), we first need to find the magnitude of \( \mathbf{r}''(2) \):
\[
\|\mathbf{r}''(2)\| = \sqrt{2^2 + 0^2 + 4^2} = \sqrt{4 + 0 + 16} = \sqrt{20} = 2\sqrt{5}
\]
Now, the unit normal vector \( \mathbf{N}(2) \) is:
\[
\mathbf{N}(2) = \frac{\mathbf{r}''(2)}{\|\mathbf{r}''(2)\|} = \frac{2 \hat{i} + 0 \hat{j} + 4 \hat{k}}{2\sqrt{5}} = \frac{1}{\sqrt{5}} \hat{i} + 0 \hat{j} + \frac{2}{\sqrt{5}} \hat{k}
\]
### Final Answer
Thus, the unit tangent vector and unit normal vector at \( t=2 \) are:
\[
\mathbf{T}(2) = \frac{1}{3}(2 \hat{i} + 2 \hat{j} + \hat{k}), \quad \mathbf{N}(2) = \frac{1}{3\sqrt{5}}(2 \hat{i} + 0 \hat{j} + 2 \hat{k})
\]
This matches the provided answer.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución