Pregunta
upstudy study bank question image url

1.3 1.4 \( 1,3 \times 8,9 \) \( 1.5\left(\frac{1}{2}+\frac{3}{4}\right)+\frac{5}{6} \) 1.7 \( 234+432+324 \quad 1.6\left(\frac{5}{9} \times \frac{2}{3}\right) \times \) 2 Complete the following using the associative prope \( 2.1276,4+(89,5+887,62)=(\ldots+\ldots)+\ldots=\ldots \) \( 2.2\left(\frac{2}{3}+\frac{7}{9}\right)+\frac{1}{6}=\ldots+(\ldots+\ldots)=\ldots \) \( 2.3 \quad(24,2 \times 4,4) \times 3,23=\ldots \times(\ldots \times \ldots)=\ldots \) \( 2.4 \frac{7}{8} \times\left(\frac{2}{3} \times \frac{1}{2}\right)=(\ldots \times \ldots) \times \ldots=\ldots \)

Ask by Guerrero Hill. in South Africa
Jan 20,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. **Calculations**: - \( 1.3 + 1.4 + (1.3 \times 8.9) = 14.27 \) - \( 1.5\left(\frac{1}{2}+\frac{3}{4}\right)+\frac{5}{6} \approx 2.7083 \) - \( 234 + 432 + 324 = 990 \) - \( 1.6\left(\frac{5}{9} \times \frac{2}{3}\right) = \frac{16}{27} \) 2. **Associative Property**: - \( 1276.4 + (89.5 + 887.62) = 2253.52 \) - \( \left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} = \frac{29}{18} \) - \( (24.2 \times 4.4) \times 3.23 = 343.09 \) - \( \frac{7}{8} \times \left(\frac{2}{3} \times \frac{1}{2}\right) = \frac{7}{24} \)

Solución

Calculate the value by following steps: - step0: Calculate: \(234+432+324\) - step1: Add the numbers: \(990\) Calculate or simplify the expression \( 1.3 + 1.4 + (1.3 * 8.9) \). Calculate the value by following steps: - step0: Calculate: \(1.3+1.4+\left(1.3\times 8.9\right)\) - step1: Multiply the numbers: \(1.3+1.4+11.57\) - step2: Add the numbers: \(14.27\) Calculate or simplify the expression \( 1.6 * (5/9 * 2/3) \). Calculate the value by following steps: - step0: Calculate: \(1.6\left(\frac{\frac{5}{9}\times 2}{3}\right)\) - step1: Multiply the numbers: \(1.6\left(\frac{\frac{10}{9}}{3}\right)\) - step2: Divide the terms: \(1.6\times \frac{10}{27}\) - step3: Convert the expressions: \(\frac{8}{5}\times \frac{10}{27}\) - step4: Multiply the numbers: \(\frac{16}{27}\) Calculate or simplify the expression \( 1.5 * (1/2 + 3/4) + 5/6 \). Calculate the value by following steps: - step0: Calculate: \(1.5\left(\frac{1}{2}+\frac{3}{4}\right)+\frac{5}{6}\) - step1: Add the numbers: \(1.5\times \frac{5}{4}+\frac{5}{6}\) - step2: Multiply the numbers: \(\frac{15}{8}+\frac{5}{6}\) - step3: Reduce fractions to a common denominator: \(\frac{15\times 3}{8\times 3}+\frac{5\times 4}{6\times 4}\) - step4: Multiply the numbers: \(\frac{15\times 3}{24}+\frac{5\times 4}{6\times 4}\) - step5: Multiply the numbers: \(\frac{15\times 3}{24}+\frac{5\times 4}{24}\) - step6: Transform the expression: \(\frac{15\times 3+5\times 4}{24}\) - step7: Multiply the numbers: \(\frac{45+5\times 4}{24}\) - step8: Multiply the numbers: \(\frac{45+20}{24}\) - step9: Add the numbers: \(\frac{65}{24}\) Let's solve the problems step by step. ### 1. Calculations 1. **Calculate \( 1.3 + 1.4 + (1.3 \times 8.9) \)**: - First, calculate \( 1.3 \times 8.9 \): \[ 1.3 \times 8.9 = 11.57 \] - Now, add \( 1.3 \) and \( 1.4 \): \[ 1.3 + 1.4 = 2.7 \] - Finally, add \( 2.7 + 11.57 \): \[ 2.7 + 11.57 = 14.27 \] **Result**: \( 14.27 \) 2. **Calculate \( 1.5\left(\frac{1}{2}+\frac{3}{4}\right)+\frac{5}{6} \)**: - First, calculate \( \frac{1}{2} + \frac{3}{4} \): \[ \frac{1}{2} = \frac{2}{4} \quad \Rightarrow \quad \frac{2}{4} + \frac{3}{4} = \frac{5}{4} \] - Now, calculate \( 1.5 \times \frac{5}{4} \): \[ 1.5 \times \frac{5}{4} = \frac{15}{8} = 1.875 \] - Finally, add \( 1.875 + \frac{5}{6} \): - Convert \( \frac{5}{6} \) to a decimal: \[ \frac{5}{6} \approx 0.8333 \] - Now add: \[ 1.875 + 0.8333 \approx 2.7083 \] **Result**: \( 2.7083 \) or \( 2\frac{17}{24} \) 3. **Calculate \( 234 + 432 + 324 \)**: - Add the numbers: \[ 234 + 432 + 324 = 990 \] **Result**: \( 990 \) 4. **Calculate \( 1.6\left(\frac{5}{9} \times \frac{2}{3}\right) \)**: - First, calculate \( \frac{5}{9} \times \frac{2}{3} \): \[ \frac{5 \times 2}{9 \times 3} = \frac{10}{27} \] - Now, calculate \( 1.6 \times \frac{10}{27} \): \[ 1.6 \times \frac{10}{27} = \frac{16}{27} \approx 0.5926 \] **Result**: \( \frac{16}{27} \) ### 2. Associative Property Now, let's complete the expressions using the associative property. 1. **For \( 2.1: 1276.4 + (89.5 + 887.62) \)**: \[ 1276.4 + (89.5 + 887.62) = (1276.4 + 89.5) + 887.62 = \ldots \] - Calculate \( 89.5 + 887.62 = 977.12 \) - Now, \( 1276.4 + 977.12 = 2253.52 \) **Result**: \( (1276.4 + 89.5) + 887.62 = 2253.52 \) 2. **For \( 2.2: \left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} \)**: \[ \left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} = \ldots + \left(\ldots + \ldots\right) = \ldots \] - Calculate \( \frac{2}{3} + \frac{7}{9} \): \[ \frac{2}{3} = \frac{6}{9} \quad \Rightarrow \quad \frac{6}{9} + \frac{7}{9} = \frac{13}{9} \] - Now, add \( \frac{13}{9} + \frac{1}{6} \): - Convert \( \frac{1}{6} \) to a common denominator: \[ \frac{1}{6} = \frac{3}{18} \quad \text{and} \quad \frac{13}{9} = \frac{26}{18} \] - Now add: \[ \frac{26}{18} + \frac{3}{18} = \frac{29}{18} \] **Result**: \( \left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} = \frac{29}{18} \) 3. **For \( 2.3: (24.2 \times 4.4) \times 3.23 \)**: \[ (24.2 \times 4.4) \times 3.23 = \ldots \times (\ldots \times \ldots) = \ldots \] - Calculate \( 24.2 \times 4.4 \): \[ 24.2 \times 4.4 = 106.48 \] - Now, multiply by \( 3.23 \): \[ 106.48 \times 3.23 = 343.09 \] **Result**: \( (24.2 \times 4.4) \times 3.23 = 343.09 \) 4. **For \( 2.4: \frac{7}{8} \times \left(\frac{2}{3} \times \frac{1}{2}\right) \)**: \[ \frac{7}{8} \times \left(\frac{2}{3} \times \frac{1}{2}\right) = \ldots \times \ldots = \ldots \] - Calculate \( \frac{2}{3} \times \frac{1}{2} = \frac{2}{6} = \frac{1}{3} \) - Now, multiply: \[ \frac{7}{8} \times \frac

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the associative property of addition and multiplication can make your life easier when tackling math problems? This property states that how you group numbers doesn't affect the sum or product. This means you can rearrange and regroup numbers as you see fit, making calculations more manageable—sort of like rearranging furniture for better flow in your room! Now, onto real-world applications! The associative property comes in handy when calculating expenses or when you’re trying to manage budgets. For example, if you're buying several items, you can group your purchases in any order, giving you the flexibility to calculate totals based on what’s easier for you at any given moment. It's all about finding your groove and making math work for you in everyday situations!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad