Responder
1. **Calculations**:
- \( 1.3 + 1.4 + (1.3 \times 8.9) = 14.27 \)
- \( 1.5\left(\frac{1}{2}+\frac{3}{4}\right)+\frac{5}{6} \approx 2.7083 \)
- \( 234 + 432 + 324 = 990 \)
- \( 1.6\left(\frac{5}{9} \times \frac{2}{3}\right) = \frac{16}{27} \)
2. **Associative Property**:
- \( 1276.4 + (89.5 + 887.62) = 2253.52 \)
- \( \left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} = \frac{29}{18} \)
- \( (24.2 \times 4.4) \times 3.23 = 343.09 \)
- \( \frac{7}{8} \times \left(\frac{2}{3} \times \frac{1}{2}\right) = \frac{7}{24} \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(234+432+324\)
- step1: Add the numbers:
\(990\)
Calculate or simplify the expression \( 1.3 + 1.4 + (1.3 * 8.9) \).
Calculate the value by following steps:
- step0: Calculate:
\(1.3+1.4+\left(1.3\times 8.9\right)\)
- step1: Multiply the numbers:
\(1.3+1.4+11.57\)
- step2: Add the numbers:
\(14.27\)
Calculate or simplify the expression \( 1.6 * (5/9 * 2/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(1.6\left(\frac{\frac{5}{9}\times 2}{3}\right)\)
- step1: Multiply the numbers:
\(1.6\left(\frac{\frac{10}{9}}{3}\right)\)
- step2: Divide the terms:
\(1.6\times \frac{10}{27}\)
- step3: Convert the expressions:
\(\frac{8}{5}\times \frac{10}{27}\)
- step4: Multiply the numbers:
\(\frac{16}{27}\)
Calculate or simplify the expression \( 1.5 * (1/2 + 3/4) + 5/6 \).
Calculate the value by following steps:
- step0: Calculate:
\(1.5\left(\frac{1}{2}+\frac{3}{4}\right)+\frac{5}{6}\)
- step1: Add the numbers:
\(1.5\times \frac{5}{4}+\frac{5}{6}\)
- step2: Multiply the numbers:
\(\frac{15}{8}+\frac{5}{6}\)
- step3: Reduce fractions to a common denominator:
\(\frac{15\times 3}{8\times 3}+\frac{5\times 4}{6\times 4}\)
- step4: Multiply the numbers:
\(\frac{15\times 3}{24}+\frac{5\times 4}{6\times 4}\)
- step5: Multiply the numbers:
\(\frac{15\times 3}{24}+\frac{5\times 4}{24}\)
- step6: Transform the expression:
\(\frac{15\times 3+5\times 4}{24}\)
- step7: Multiply the numbers:
\(\frac{45+5\times 4}{24}\)
- step8: Multiply the numbers:
\(\frac{45+20}{24}\)
- step9: Add the numbers:
\(\frac{65}{24}\)
Let's solve the problems step by step.
### 1. Calculations
1. **Calculate \( 1.3 + 1.4 + (1.3 \times 8.9) \)**:
- First, calculate \( 1.3 \times 8.9 \):
\[
1.3 \times 8.9 = 11.57
\]
- Now, add \( 1.3 \) and \( 1.4 \):
\[
1.3 + 1.4 = 2.7
\]
- Finally, add \( 2.7 + 11.57 \):
\[
2.7 + 11.57 = 14.27
\]
**Result**: \( 14.27 \)
2. **Calculate \( 1.5\left(\frac{1}{2}+\frac{3}{4}\right)+\frac{5}{6} \)**:
- First, calculate \( \frac{1}{2} + \frac{3}{4} \):
\[
\frac{1}{2} = \frac{2}{4} \quad \Rightarrow \quad \frac{2}{4} + \frac{3}{4} = \frac{5}{4}
\]
- Now, calculate \( 1.5 \times \frac{5}{4} \):
\[
1.5 \times \frac{5}{4} = \frac{15}{8} = 1.875
\]
- Finally, add \( 1.875 + \frac{5}{6} \):
- Convert \( \frac{5}{6} \) to a decimal:
\[
\frac{5}{6} \approx 0.8333
\]
- Now add:
\[
1.875 + 0.8333 \approx 2.7083
\]
**Result**: \( 2.7083 \) or \( 2\frac{17}{24} \)
3. **Calculate \( 234 + 432 + 324 \)**:
- Add the numbers:
\[
234 + 432 + 324 = 990
\]
**Result**: \( 990 \)
4. **Calculate \( 1.6\left(\frac{5}{9} \times \frac{2}{3}\right) \)**:
- First, calculate \( \frac{5}{9} \times \frac{2}{3} \):
\[
\frac{5 \times 2}{9 \times 3} = \frac{10}{27}
\]
- Now, calculate \( 1.6 \times \frac{10}{27} \):
\[
1.6 \times \frac{10}{27} = \frac{16}{27} \approx 0.5926
\]
**Result**: \( \frac{16}{27} \)
### 2. Associative Property
Now, let's complete the expressions using the associative property.
1. **For \( 2.1: 1276.4 + (89.5 + 887.62) \)**:
\[
1276.4 + (89.5 + 887.62) = (1276.4 + 89.5) + 887.62 = \ldots
\]
- Calculate \( 89.5 + 887.62 = 977.12 \)
- Now, \( 1276.4 + 977.12 = 2253.52 \)
**Result**: \( (1276.4 + 89.5) + 887.62 = 2253.52 \)
2. **For \( 2.2: \left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} \)**:
\[
\left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} = \ldots + \left(\ldots + \ldots\right) = \ldots
\]
- Calculate \( \frac{2}{3} + \frac{7}{9} \):
\[
\frac{2}{3} = \frac{6}{9} \quad \Rightarrow \quad \frac{6}{9} + \frac{7}{9} = \frac{13}{9}
\]
- Now, add \( \frac{13}{9} + \frac{1}{6} \):
- Convert \( \frac{1}{6} \) to a common denominator:
\[
\frac{1}{6} = \frac{3}{18} \quad \text{and} \quad \frac{13}{9} = \frac{26}{18}
\]
- Now add:
\[
\frac{26}{18} + \frac{3}{18} = \frac{29}{18}
\]
**Result**: \( \left(\frac{2}{3} + \frac{7}{9}\right) + \frac{1}{6} = \frac{29}{18} \)
3. **For \( 2.3: (24.2 \times 4.4) \times 3.23 \)**:
\[
(24.2 \times 4.4) \times 3.23 = \ldots \times (\ldots \times \ldots) = \ldots
\]
- Calculate \( 24.2 \times 4.4 \):
\[
24.2 \times 4.4 = 106.48
\]
- Now, multiply by \( 3.23 \):
\[
106.48 \times 3.23 = 343.09
\]
**Result**: \( (24.2 \times 4.4) \times 3.23 = 343.09 \)
4. **For \( 2.4: \frac{7}{8} \times \left(\frac{2}{3} \times \frac{1}{2}\right) \)**:
\[
\frac{7}{8} \times \left(\frac{2}{3} \times \frac{1}{2}\right) = \ldots \times \ldots = \ldots
\]
- Calculate \( \frac{2}{3} \times \frac{1}{2} = \frac{2}{6} = \frac{1}{3} \)
- Now, multiply:
\[
\frac{7}{8} \times \frac
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución