Pregunta
upstudy study bank question image url

3, Determine the no of term a, \( 3+11+19+\ldots=1580 \)

Ask by Clarke Norton. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 20 terms in the series. **Answer:** 20

Solución

To determine the number of terms in the arithmetic series \( 3 + 11 + 19 + \ldots = 1580 \), let's follow these steps: ### 1. Identify the Components of the Arithmetic Series - **First Term (\(a\))**: \(3\) - **Common Difference (\(d\))**: \(11 - 3 = 8\) ### 2. Use the Formula for the Sum of an Arithmetic Series The sum of the first \(n\) terms of an arithmetic series is given by: \[ S_n = \frac{n}{2} \left[2a + (n-1)d\right] \] Given that \(S_n = 1580\), plug in the known values: \[ 1580 = \frac{n}{2} \left[2(3) + (n-1)(8)\right] \] \[ 1580 = \frac{n}{2} \left[6 + 8n - 8\right] \] \[ 1580 = \frac{n}{2} \left[8n - 2\right] \] \[ 1580 = \frac{8n^2 - 2n}{2} \] \[ 1580 = 4n^2 - n \] ### 3. Formulate and Solve the Quadratic Equation Rearrange the equation: \[ 4n^2 - n - 1580 = 0 \] Use the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 4\), \(b = -1\), and \(c = -1580\): \[ n = \frac{1 \pm \sqrt{1 + 4 \times 4 \times 1580}}{8} \] \[ n = \frac{1 \pm \sqrt{25281}}{8} \] \[ \sqrt{25281} = 159 \] \[ n = \frac{1 + 159}{8} = \frac{160}{8} = 20 \] (The negative root is discarded since the number of terms cannot be negative.) ### **Conclusion** The arithmetic series has **20 terms**. **Answer:** 20

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the number of terms in the series \(3 + 11 + 19 + \ldots = 1580\), we first need to identify the pattern. The series is an arithmetic sequence where the first term \(a = 3\) and the common difference \(d = 8\) (since \(11 - 3 = 8\)). The \(n\)-th term can be expressed as: \[ a_n = a + (n-1)d = 3 + (n-1) \times 8 = 8n - 5 \] To find \(n\), we set the sum of the first \(n\) terms equal to \(1580\): \[ S_n = \frac{n}{2} \times (a + a_n) = \frac{n}{2} \times (3 + (8n - 5)) = \frac{n}{2} \times (8n - 2) = 4n^2 - n \] Setting this equal to \(1580\): \[ 4n^2 - n - 1580 = 0 \] Now, we can solve this quadratic equation using the quadratic formula \(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 4\), \(b = -1\), and \(c = -1580\): \[ b^2 - 4ac = (-1)^2 - 4 \times 4 \times (-1580) = 1 + 25280 = 25281 \] Calculating \(n\): \[ n = \frac{1 \pm \sqrt{25281}}{8} \] Calculating \(\sqrt{25281}\): \(\sqrt{25281} \approx 159.1\), so: \[ n = \frac{1 + 159}{8} \approx 20 \] Verifying \(n = 20\): Inserting \(n = 20\) back into \(S_n\): \[ S_{20} = 4(20)^2 - 20 = 1600 - 20 = 1580 \] So, the number of terms in the series is **20**. Now let's dive into some additional knowledge! The arithmetic sequence is one of the earliest forms of sequences studied by mathematicians, dating back to ancient civilizations. The ancient Egyptians and Babylonians employed these sequences for trade and land division. It reflects a universal concept, showing how people connected with numbers thousands of years ago. In the real world, understanding arithmetic sequences can help you in budgeting, project planning, and even in understanding patterns in nature, like the growth of trees or the arrangement of leaves. When you spot a repeating pattern, like your favorite song following a specific beat, you might just be encountering an arithmetic sequence in musical form!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad