Pregunta

What does the exponent in an expression indicate?

Ask by Gonzalez Reeves. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The exponent in an expression shows how many times the base is multiplied by itself. For example, in \( a^n \), \( a \) is multiplied by itself \( n \) times.

Solución

The exponent in an expression indicates how many times the base is multiplied by itself. It is a shorthand notation that simplifies the representation of repeated multiplication. For example, in the expression \( a^n \): - \( a \) is the base. - \( n \) is the exponent. This means that \( a \) is multiplied by itself \( n \) times. Here are a few key points about exponents: 1. **Positive Exponents**: If \( n \) is a positive integer, \( a^n = a \times a \times a \times \ldots \) (n times). 2. **Zero Exponent**: Any non-zero number raised to the power of zero is equal to 1, i.e., \( a^0 = 1 \) (for \( a \neq 0 \)). 3. **Negative Exponents**: A negative exponent indicates the reciprocal of the base raised to the absolute value of the exponent, i.e., \( a^{-n} = \frac{1}{a^n} \). 4. **Fractional Exponents**: A fractional exponent indicates a root. For example, \( a^{\frac{1}{n}} \) represents the \( n \)-th root of \( a \). 5. **Properties of Exponents**: There are several important properties, such as: - \( a^m \times a^n = a^{m+n} \) - \( \frac{a^m}{a^n} = a^{m-n} \) - \( (a^m)^n = a^{m \cdot n} \) Understanding exponents is fundamental in algebra and is widely used in various mathematical contexts, including polynomials, exponential functions, and scientific notation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The exponent in an expression tells you how many times to multiply the base number by itself. For example, in \(3^4\), the 4 indicates that you multiply 3 by itself four times: \(3 \times 3 \times 3 \times 3\), which equals 81. It’s like giving your number a superpower—making it grow much faster! In real world situations, exponents are everywhere! From calculating areas (like squares, where area = side²) to understanding exponential growth in populations or finances, where values can explode rapidly over time. You might’ve heard of compound interest—if your money grows at a rate of 5% annually, the formula involves exponents to show how quickly your investment can balloon!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad