Pregunta
upstudy study bank question image url

\( \$ 3000 \) are deposited in an account with \( 9 \% \) interest rate, compounded continuously. What is the balance after 14 years? \( \mathrm{F}=\$[?] \) Round to the nearest cent.

Ask by Cervantes Zimmerman. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance after 14 years is approximately \$10,576.26.

Solución

To find the balance after 14 years with continuous compounding, we can use the formula for continuous compounding: \[ A = P e^{rt} \] Where: - \( A \) is the amount after \( t \) years, - \( P \) is the principal amount (initial deposit), - \( r \) is the annual interest rate (in decimal form), - \( t \) is the time in years. Given: - Principal amount \( P = \$3000 \), - Annual interest rate \( r = 9\% = 0.09 \), - Time \( t = 14 \) years. Substitute the values into the formula: \[ A = 3000 e^{0.09 \times 14} \] Now, we can calculate the balance after 14 years. Calculate the value by following steps: - step0: Calculate: \(3000e^{0.09\times 14}\) - step1: Multiply the numbers: \(3000e^{1.26}\) - step2: Convert the expressions: \(3000e^{\frac{63}{50}}\) The balance after 14 years with continuous compounding is approximately $10,576.26. Rounding to the nearest cent, the balance is $10,576.26.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the balance after 14 years for an investment compounded continuously, we use the formula \( F = Pe^{rt} \), where \( F \) is the final amount, \( P \) is the principal amount (initial deposit), \( r \) is the interest rate (as a decimal), and \( t \) is the time in years. Given \( P = 3000 \), \( r = 0.09 \), and \( t = 14 \): \[ F = 3000 \times e^{0.09 \times 14} \] Calculating \( 0.09 \times 14 = 1.26 \), and \( e^{1.26} \approx 3.535 \): \[ F \approx 3000 \times 3.535 \approx 10605.00 \] So, the balance after 14 years is approximately \( F = \$10605.00 \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad