8 If \( x^{3}=a(x+1)^{3}+b(x+1)^{2}+c(x+1)+d \), find the values of \( a, b, c \) and \( d \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the equation \( x^{3} = a(x+1)^{3}+b(x+1)^{2}+c(x+1)+d \), we first expand the right side. 1. Expanding \( (x+1)^{3} \): \[ (x+1)^{3} = x^3 + 3x^2 + 3x + 1 \] 2. Expanding \( (x+1)^{2} \): \[ (x+1)^{2} = x^2 + 2x + 1 \] Now substituting these expansions into the equation gives us: \[ x^{3} = a(x^{3} + 3x^{2} + 3x + 1) + b(x^{2} + 2x + 1) + c(x + 1) + d \] Expanding this out results in: \[ x^{3} = ax^{3} + (3a + b)x^{2} + (3a + 2b + c)x + (a + b + c + d) \] Now we can equate the coefficients from both sides: - Coefficient of \( x^{3} \): \[ 1 = a \quad \Rightarrow \quad a = 1 \] - Coefficient of \( x^{2} \): \[ 0 = 3a + b \quad \Rightarrow \quad 0 = 3(1) + b \quad \Rightarrow \quad b = -3 \] - Coefficient of \( x \): \[ 0 = 3a + 2b + c \quad \Rightarrow \quad 0 = 3(1) + 2(-3) + c \quad \Rightarrow \quad 0 = 3 - 6 + c \quad \Rightarrow \quad c = 3 \] - Constant term: \[ 0 = a + b + c + d \quad \Rightarrow \quad 0 = 1 - 3 + 3 + d \quad \Rightarrow \quad 0 = 1 + d \quad \Rightarrow \quad d = -1 \] Finally, we have: \[ a = 1, \quad b = -3, \quad c = 3, \quad d = -1 \] So the values are: \[ \boxed{1, -3, 3, -1} \]