Pregunta
upstudy study bank question image url

7) Which equation represents a function of \( x \) that is not linear? * \[ y=4(x+3) \] Option 1 \( y=4 x+3 x^{2} \) Option 2 Option 3

Ask by Reese Macdonald. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Option 2: \( y = 4x + 3x^2 \) is not linear.

Solución

To determine which equation represents a function of \( x \) that is not linear, we need to analyze the given options. 1. **Option 1:** \( y = 4(x + 3) \) This equation can be simplified: \[ y = 4x + 12 \] This is a linear equation because it can be expressed in the form \( y = mx + b \), where \( m = 4 \) and \( b = 12 \). 2. **Option 2:** \( y = 4x + 3x^2 \) This equation contains a term with \( x^2 \): \[ y = 4x + 3x^2 \] This is a quadratic equation because of the \( 3x^2 \) term. Quadratic equations are not linear functions. 3. **Option 3:** (Not provided) Since we only have two options to analyze, we can conclude that: - **Option 1** is linear. - **Option 2** is not linear. Thus, the equation that represents a function of \( x \) that is not linear is: **Option 2:** \( y = 4x + 3x^2 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

If you take a look at option 1, \( y = 4x + 3x^{2} \), you'll notice it contains a term with \( x^{2} \). This means it's a polynomial equation of degree 2, also known as a quadratic function. Unlike linear functions, which output a straight line when graphed, quadratic functions create that delightful parabola shape. So, definitely a non-linear function in the mix! On the flip side, \( y = 4(x + 3) \) simplifies directly to a linear equation, essentially representing a straight line. It's all about taking a careful look at the highest power of \( x \) in the equation to determine its linearity. So remember: if you spot \( x^{2} \) (or higher!), you've got a non-linear function on your hands!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad