Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 98 and standard deviation 17 . What is the probability that \( X \) is between 47 and 81 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Byrd Erickson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 47 and 81 is approximately 0.157.

Solución

To find the probability that \( X \) is between 47 and 81 for a normally distributed random variable with mean \( \mu = 98 \) and standard deviation \( \sigma = 17 \), we can use the properties of the normal distribution. 1. **Calculate the Z-scores** for the values 47 and 81 using the formula: \[ Z = \frac{X - \mu}{\sigma} \] 2. **Calculate the Z-score for 47**: \[ Z_{47} = \frac{47 - 98}{17} \] 3. **Calculate the Z-score for 81**: \[ Z_{81} = \frac{81 - 98}{17} \] 4. **Use the Z-scores to find the probabilities** associated with these Z-scores using the standard normal distribution. Let's perform these calculations step by step. ### Step 1: Calculate Z-scores Calculating \( Z_{47} \): \[ Z_{47} = \frac{47 - 98}{17} = \frac{-51}{17} \approx -3 \] Calculating \( Z_{81} \): \[ Z_{81} = \frac{81 - 98}{17} = \frac{-17}{17} = -1 \] ### Step 2: Find the probabilities Now we need to find the probabilities corresponding to these Z-scores. - The probability of \( Z < -3 \) is very small (approximately 0.0013). - The probability of \( Z < -1 \) is approximately 0.1587. ### Step 3: Calculate the probability that \( X \) is between 47 and 81 To find the probability that \( X \) is between 47 and 81, we subtract the probability of \( Z < -3 \) from the probability of \( Z < -1 \): \[ P(47 < X < 81) = P(Z < -1) - P(Z < -3) \approx 0.1587 - 0.0013 \] Calculating this gives: \[ P(47 < X < 81) \approx 0.1574 \] ### Final Answer Thus, the probability that \( X \) is between 47 and 81 is approximately \( 0.157 \) when rounded to the nearest thousandth. \[ \boxed{0.157} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To use the \(0.68-0.95-0.997\) rule, we first convert the raw scores of 47 and 81 into z-scores. The z-score formula is: \[ z = \frac{(X - \mu)}{\sigma} \] For \(X = 47\): \[ z = \frac{(47 - 98)}{17} = \frac{-51}{17} \approx -3.00 \] For \(X = 81\): \[ z = \frac{(81 - 98)}{17} = \frac{-17}{17} \approx -1.00 \] Now we can reference a standard normal distribution table (or the empirical rule). From the \(0.68-0.95-0.997\) rule: - Approximately 68% of the data falls within 1 standard deviation of the mean (between \(81\) and \(115\)). - About 95% falls within 2 standard deviations (between \(64\) and \(132\)). - About 99.7% falls within 3 standard deviations (between \(47\) and \(149\)). Since we are looking at \(X\) between \(47\) and \(81\), we know that 47 is 3 standard deviations below the mean and 81 is 1 standard deviation below the mean. So, we can find the probability of being between these points: The total probability for a range of 3 standard deviations is 99.7%, and for 1 standard deviation, it is 68%. Thus, for our region, we can determine the percentage of data between \(z = -3\) and \(z = -1\). This will approximately be half of the 95% (2 standard deviations), which gives: \[ P(47 < X < 81) \approx \frac{95\% - (100\% - 99.7\%)}{2} \approx 0.15 \] Thus, the probability that \(X\) is between 47 and 81 is approximately \(0.15\) when expressed as a decimal (rounded to the nearest thousandth, if needed).

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad