Pregunta
upstudy study bank question image url

Many Solutions Write a number in each box so that the equation has the indicated number of solutions. (1) One solution \[ 2 x-1=4 x-1 \] 2) No solution \[ \frac{1}{3} x+2=\frac{1}{3} x-3 \] (3) Infinitely many solutions \[ \frac{2}{5} x+3=\frac{2}{5} x+3 \] (4) One solution \[ 2(2 \sqrt{2}-2)=6 x+5 \] (5) One solution \( \square \) \( x+4= \) \( \square \) \( x-8 \) (6) No solution \[ \frac{2}{3} x+7=\frac{2}{3} x+7 \]

Ask by Goodwin Sherman. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To ensure each equation has the specified number of solutions: 1. **One Solution:** \(2x - 1 = 4x - 1\) has \(x = 0\). 2. **No Solution:** \(\frac{1}{3}x + 2 = \frac{1}{3}x - 3\) is a contradiction. 3. **Infinitely Many Solutions:** \(\frac{2}{5}x + 3 = \frac{2}{5}x + 3\) holds for all \(x\). 4. **One Solution:** \(2(2\sqrt{2} - 2) = 6x + 5\) has \(x = \frac{4\sqrt{2} - 9}{6}\). 5. **One Solution:** Fill the boxes with different numbers, e.g., \(3x + 4 = 5x - 8\). 6. **No Solution:** Corrected to \(\frac{2}{3}x + 7 = \frac{2}{3}x + 5\). These adjustments ensure each equation meets the required number of solutions.

Solución

Certainly! Let's address each equation individually to ensure they have the indicated number of solutions. For equations that require filling in numbers (denoted by boxes), I'll provide appropriate values that meet the specified conditions. --- ### 1. **One Solution** \[ 2x - 1 = 4x - 1 \] **Verification:** \[ 2x - 1 = 4x - 1 \] Subtract \(2x\) from both sides: \[ -1 = 2x - 1 \] Add \(1\) to both sides: \[ 0 = 2x \] Divide by \(2\): \[ x = 0 \] **Conclusion:** There is **one solution**, \(x = 0\), as required. --- ### 2. **No Solution** \[ \frac{1}{3}x + 2 = \frac{1}{3}x - 3 \] **Verification:** Subtract \(\frac{1}{3}x\) from both sides: \[ 2 = -3 \] This is a contradiction. **Conclusion:** There is **no solution**, as the equation leads to an impossible statement. --- ### 3. **Infinitely Many Solutions** \[ \frac{2}{5}x + 3 = \frac{2}{5}x + 3 \] **Verification:** Subtract \(\frac{2}{5}x\) from both sides: \[ 3 = 3 \] This is always true for any \(x\). **Conclusion:** There are **infinitely many solutions**, as the equation holds for all real numbers \(x\). --- ### 4. **One Solution** \[ 2(2\sqrt{2} - 2) = 6x + 5 \] **Solving for \(x\):** First, simplify the left side: \[ 2 \times 2\sqrt{2} = 4\sqrt{2} \] \[ 2 \times (-2) = -4 \] \[ 4\sqrt{2} - 4 = 6x + 5 \] Subtract \(5\) from both sides: \[ 4\sqrt{2} - 9 = 6x \] Divide by \(6\): \[ x = \frac{4\sqrt{2} - 9}{6} \] **Conclusion:** There is **one solution**, \(x = \frac{4\sqrt{2} - 9}{6}\), as required. --- ### 5. **One Solution** \[ \boxed{\phantom{a}}\,x + 4 = \boxed{\phantom{a}}\,x - 8 \] **Goal:** Fill in the blanks with numbers such that the equation has exactly one solution. **Strategy:** For the equation \(ax + 4 = bx - 8\) to have one solution, \(a\) and \(b\) must be different (\(a \neq b\)). **Example:** Let’s choose \(a = 3\) and \(b = 5\): \[ 3x + 4 = 5x - 8 \] **Solving for \(x\):** Subtract \(3x\) from both sides: \[ 4 = 2x - 8 \] Add \(8\) to both sides: \[ 12 = 2x \] Divide by \(2\): \[ x = 6 \] **Conclusion:** With \(a = 3\) and \(b = 5\), the equation has **one solution**, \(x = 6\). Therefore, one possible way to fill the boxes is: \[ 3x + 4 = 5x - 8 \] *Note:* Any pair of different numbers for \(a\) and \(b\) will ensure exactly one solution. --- ### 6. **No Solution** \[ \frac{2}{3}x + 7 = \frac{2}{3}x + 7 \] **Issue:** As written, this equation simplifies to \(7 = 7\), which is always true for any \(x\). Therefore, it has **infinitely many solutions**, not "no solution" as intended. **Correction Needed:** To achieve **no solution**, the constants on both sides must differ, making the equation a contradiction. **Corrected Example:** \[ \frac{2}{3}x + 7 = \frac{2}{3}x + 5 \] **Verification:** Subtract \(\frac{2}{3}x\) from both sides: \[ 7 = 5 \] This is a contradiction. **Conclusion:** By modifying the equation to \(\frac{2}{3}x + 7 = \frac{2}{3}x + 5\), it now has **no solution**. --- **Summary:** - **Equations 1-4:** Already correctly set with the desired number of solutions. - **Equation 5:** Example filled as \(3x + 4 = 5x - 8\) to ensure one solution. - **Equation 6:** Original equation had infinitely many solutions; corrected to \(\frac{2}{3}x + 7 = \frac{2}{3}x + 5\) for no solution. Feel free to adjust the coefficients in Equation 5 as long as they are different to maintain exactly one solution.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

For one solution, set different coefficients: \[ 2 x + 1 = 4 x - 1 \] This gives a single point where both sides equal each other. Easy peasy! For infinitely many solutions, you'll want the equations to be identical: \[ \frac{2}{5} x + 3 = \frac{2}{5} x + 3 \] Because they’re the same line, they overlap completely, leading to infinite intersection points. Just like best buddies sharing everything!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad