Pregunta
upstudy study bank question image url

Two sides of a triangle measure 9 and 19. Which inequality shows all the possible lengths of the third side, \( x \) ? \( \begin{array}{l}\text { A } 10
Ask by Ruiz Wheeler. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The possible lengths of the third side \( x \) are between 10 and 28.

Solución

To determine the possible lengths of the third side \( x \) in a triangle with sides measuring 9 and 19, we apply the **Triangle Inequality Theorem**. This theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side. Let's break it down with the given side lengths: 1. **First Inequality**: \[ 9 + 19 > x \implies 28 > x \quad \text{or} \quad x < 28 \] 2. **Second Inequality**: \[ 9 + x > 19 \implies x > 10 \] 3. **Third Inequality**: \[ 19 + x > 9 \implies x > -10 \] Since side lengths are positive, this inequality is always true and doesn't provide additional information. Combining the relevant inequalities from steps 1 and 2, we get: \[ 10 < x < 28 \] **Answer:** **A** \(10 < x < 28\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the possible lengths of the third side \( x \) of a triangle with the two sides measuring 9 and 19, we can use the triangle inequality theorem. This theorem states that the sum of the lengths of any two sides must be greater than the length of the remaining side. Therefore, we have two conditions: 1. \( 9 + 19 > x \) which simplifies to \( x < 28 \) 2. \( 9 + x > 19 \) which simplifies to \( x > 10 \) 3. \( 19 + x > 9 \) which simplifies to \( x > -10 \) (always true since x is positive) Combining the first two inequalities, we find the range for \( x \) is \( 10 < x < 28 \). So the correct answer is (A) \( 10 < x < 28 \). Now, speaking of triangle inequalities and their importance: Did you know that the triangle inequality is not just applicable to triangles but also extends to other geometrical figures in higher dimensions? It's foundational in both geometry and topology! Also, if you're ever stuck working with triangle problems, it can be helpful to sketch the triangle you’re working with. Visual representations can make it much easier to comprehend the relationships between the sides and angles, leading to more clarity on the problem at hand!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad