10. Find the value of \( x \) so that the ratios \( 8: 20 \) and \( 6: x \) are equivalent. Show the process. (Hint rewrite the ratios as fractions, then use cross products to solve).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve for \( x \) in the equivalent ratios \( 8:20 \) and \( 6:x \), we start by rewriting the ratios as fractions: \[ \frac{8}{20} = \frac{6}{x} \] Next, we apply cross-products. This means we multiply the numerator of one fraction by the denominator of the other: \[ 8 \cdot x = 6 \cdot 20 \] Calculating the right side: \[ 6 \cdot 20 = 120 \] Now, we have: \[ 8x = 120 \] To isolate \( x \), divide both sides by 8: \[ x = \frac{120}{8} = 15 \] Thus, the value of \( x \) is \( \boxed{15} \).