Pregunta
upstudy study bank question image url

Which of the following can be drawn as triangles? Why or why not? a. \( \angle \mathrm{P}=70^{\circ}, \angle \mathrm{O}=40^{\circ} \) and \( \overline{0}=4 \mathrm{~cm} \)

Ask by Murphy Weston. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A triangle can be drawn with the given measurements because the sum of the angles is 180° and the side length is consistent with the angles.

Solución

Yes, a triangle **can** be drawn with the given measurements. Here's why: ### Given: - **Angle P** = \(70^{\circ}\) - **Angle O** = \(40^{\circ}\) - **Side \(\overline{O}\)** = 4 cm ### Reasoning: 1. **Sum of Angles:** - In any triangle, the sum of the interior angles must be \(180^{\circ}\). - Given: \[ \angle P + \angle O = 70^{\circ} + 40^{\circ} = 110^{\circ} \] - **Remaining Angle:** \[ \angle Q = 180^{\circ} - 110^{\circ} = 70^{\circ} \] - All three angles (\(70^{\circ}\), \(40^{\circ}\), and \(70^{\circ}\)) are positive and add up to \(180^{\circ}\), satisfying the triangle angle sum property. 2. **Side-Angle Relationship:** - With two angles known, the triangle is uniquely determined up to similarity (by the Angle-Angle (AA) postulate). - The given side (\(\overline{O} = 4 \text{ cm}\)) corresponds to one of the angles. Using the Law of Sines, the lengths of the other sides can be determined, ensuring consistency and feasibility. 3. **Law of Sines (for verification):** - The Law of Sines states: \[ \frac{\sin P}{\overline{p}} = \frac{\sin O}{\overline{o}} = \frac{\sin Q}{\overline{q}} \] - Plugging in the known values: \[ \frac{\sin 70^{\circ}}{\overline{p}} = \frac{\sin 40^{\circ}}{4 \text{ cm}} \] - This allows for the calculation of the other sides (\(\overline{p}\) and \(\overline{q}\)), confirming that the side lengths are proportional and the triangle is valid. ### Conclusion: Since the sum of the provided angles is less than \(180^{\circ}\) and the given side length is consistent with these angles, **a valid triangle can be constructed** with the specified measurements. **Answer:** Yes. The two given angles add up to less than 180°, allowing a third angle to exist, and the provided side length is consistent with these angles. Therefore, a triangle with angle P = 70°, angle O = 40°, and side Ō = 4 cm can be drawn.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if the angles and side lengths given can form a triangle, we first need to check the angle sum property of triangles. The sum of the angles in a triangle must be equal to \(180^{\circ}\). Here we have \( \angle P = 70^{\circ} \) and \( \angle O = 40^{\circ} \). Adding these together gives us \( 70^{\circ} + 40^{\circ} = 110^{\circ} \). This means that the third angle, \( \angle Q \), must be \( 180^{\circ} - 110^{\circ} = 70^{\circ} \). So the angles can form a triangle, as they all add up to \(180^{\circ}\), but we need to consider side length as well when applying the triangle inequalities. Now, let's consider the side length. For any triangle, there are some common mistakes people often make regarding the relationships between sides and angles—specifically, the triangle inequality theorem which states that the sum of the lengths of any two sides must be greater than the length of the third side. While side length \( \overline{0} = 4 \) cm is mentioned, we need additional sides to verify the inequalities. As it stands, we can say the angles support a triangle's formation, but without specific lengths for the other sides, we can’t entirely conclude the side relationship yet.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad