Pregunta
(3) \( 9 x^{2}-4 \) (6) \( 16 a^{2}-121 b^{2} \) (9) \( a^{4}-16 \)
Ask by Rogers Schwartz. in South Africa
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 9x^{2} - 4 = (3x - 2)(3x + 2) \)
\( 16a^{2} - 121b^{2} = (4a - 11b)(4a + 11b) \)
\( a^{4} - 16 = (a - 2)(a + 2)(a^{2} + 4) \)
Solución
Sure, let's factorize each of the given expressions step by step.
### (3) \( 9x^{2} - 4 \)
**Step 1:** Recognize that this is a **difference of squares**. Recall that \( a^2 - b^2 = (a - b)(a + b) \).
Here, \( 9x^{2} = (3x)^2 \) and \( 4 = 2^2 \).
**Factorization:**
\[
9x^{2} - 4 = (3x)^2 - 2^2 = (3x - 2)(3x + 2)
\]
---
### (6) \( 16a^{2} - 121b^{2} \)
**Step 1:** Again, this is a **difference of squares**.
Here, \( 16a^{2} = (4a)^2 \) and \( 121b^{2} = (11b)^2 \).
**Factorization:**
\[
16a^{2} - 121b^{2} = (4a)^2 - (11b)^2 = (4a - 11b)(4a + 11b)
\]
---
### (9) \( a^{4} - 16 \)
**Step 1:** Notice that \( a^4 \) is a perfect square since \( a^4 = (a^2)^2 \), and \( 16 = 4^2 \). So, this is a **difference of squares**.
\[
a^{4} - 16 = (a^2)^2 - 4^2 = (a^2 - 4)(a^2 + 4)
\]
**Step 2:** The term \( a^2 - 4 \) is also a **difference of squares** and can be further factored.
\[
a^2 - 4 = (a)^2 - 2^2 = (a - 2)(a + 2)
\]
**Final Factorization:**
\[
a^{4} - 16 = (a - 2)(a + 2)(a^2 + 4)
\]
*Note:* The term \( a^2 + 4 \) does not factor further over the set of real numbers. If you are working within the complex number system, \( a^2 + 4 \) can be factored as \( (a + 2i)(a - 2i) \), where \( i \) is the imaginary unit.
---
**Summary of Factorizations:**
1. \( 9x^{2} - 4 = (3x - 2)(3x + 2) \)
2. \( 16a^{2} - 121b^{2} = (4a - 11b)(4a + 11b) \)
3. \( a^{4} - 16 = (a - 2)(a + 2)(a^2 + 4) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
Let’s dive into some fun algebra! For \( 9x^{2}-4 \), this expression can be factored using the difference of squares formula, which says \( a^{2} - b^{2} = (a - b)(a + b) \). Here, it's \( (3x - 2)(3x + 2) \). Now onto \( 16a^{2}-121b^{2} \). This also fits the difference of squares: \( (4a - 11b)(4a + 11b) \). Lastly, for \( a^{4}-16 \), recognize this as \( a^{4} - 4^{2} \). It can be factored into \( (a^{2} - 4)(a^{2} + 4) \), and the first part can further be broken down into \( (a - 2)(a + 2)(a^{2} + 4) \). Happy factoring!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium