Question Let the curve \( C \) be the function \( f(y)=6 y^{5}+1 \) over the interval \( 1 \leq y \leq 7 \). Set up the integral for the arc length of the curve \( C \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the arc length of the curve \( C \) represented by the function \( f(y) = 6y^5 + 1 \) over the interval \( 1 \leq y \leq 7 \), we need to apply the arc length formula for a function defined in terms of \( y \). The formula is given by: \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{df}{dy} \right)^2} \, dy \] First, we calculate the derivative of \( f(y) \): \[ \frac{df}{dy} = 30y^4 \] Now substitute this into the arc length integral: \[ L = \int_{1}^{7} \sqrt{1 + (30y^4)^2} \, dy = \int_{1}^{7} \sqrt{1 + 900y^8} \, dy \] So, the integral that sets up the arc length of the curve \( C \) is: \[ L = \int_{1}^{7} \sqrt{1 + 900y^8} \, dy \]