Pregunta
upstudy study bank question image url

(2) Find vertical and horizontal asymptotes of the following functions. Show your work. Evaluate all the necessary limits. (i) \( f(x)=\frac{2 x-1}{3 x^{2}+5 x-2} \) (ii) \( f(x)=\frac{-x^{3}+2 x^{2}}{x^{4}-4 x^{3}+4 x^{2}} \)

Ask by Chandler Turnbull. in Canada
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Asymptotes:** 1. **Function (i):** - **Vertical Asymptotes:** \( x = \frac{1}{3} \) and \( x = -2 \) - **Horizontal Asymptote:** \( y = 0 \) 2. **Function (ii):** - **Vertical Asymptote:** \( x = 2 \) - **Horizontal Asymptote:** \( y = 0 \)

Solución

Let's analyze each function to find their vertical and horizontal asymptotes by evaluating the necessary limits and performing algebraic simplifications where needed. --- ### **Problem (i)** **Function:** \[ f(x) = \frac{2x - 1}{3x^2 + 5x - 2} \] #### **1. Vertical Asymptotes** Vertical asymptotes occur where the denominator is zero (since the function is undefined there) and the numerator is not zero at those points. 1. **Find the roots of the denominator:** \[ 3x^2 + 5x - 2 = 0 \] 2. **Solve the quadratic equation using the quadratic formula:** \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = 5 \), and \( c = -2 \). 3. **Calculate the discriminant:** \[ \Delta = b^2 - 4ac = 25 + 24 = 49 \] 4. **Find the roots:** \[ x = \frac{-5 \pm \sqrt{49}}{6} = \frac{-5 \pm 7}{6} \] - \( x = \frac{2}{6} = \frac{1}{3} \) - \( x = \frac{-12}{6} = -2 \) 5. **Check the numerator at these points:** \[ \text{At } x = \frac{1}{3}: \quad 2\left(\frac{1}{3}\right) - 1 = \frac{2}{3} - 1 = -\frac{1}{3} \neq 0 \] \[ \text{At } x = -2: \quad 2(-2) - 1 = -4 - 1 = -5 \neq 0 \] Since the numerator is not zero at \( x = \frac{1}{3} \) and \( x = -2 \), these are indeed vertical asymptotes. **Vertical Asymptotes:** \[ x = \frac{1}{3} \quad \text{and} \quad x = -2 \] #### **2. Horizontal Asymptote** To determine the horizontal asymptote, compare the degrees of the numerator and the denominator. - **Degree of the numerator (2x - 1):** 1 - **Degree of the denominator (3x² + 5x - 2):** 2 Since the degree of the denominator is greater than the degree of the numerator, the horizontal asymptote is: \[ y = 0 \] --- ### **Problem (ii)** **Function:** \[ f(x) = \frac{-x^3 + 2x^2}{x^4 - 4x^3 + 4x^2} \] #### **1. Simplify the Function** First, factor both the numerator and the denominator: 1. **Factor the numerator:** \[ -x^3 + 2x^2 = -x^2(x - 2) \] 2. **Factor the denominator:** \[ x^4 - 4x^3 + 4x^2 = x^2(x^2 - 4x + 4) = x^2(x - 2)^2 \] 3. **Simplify the function by canceling common factors:** \[ f(x) = \frac{-x^2(x - 2)}{x^2(x - 2)^2} = \frac{-1}{x - 2} \] **Note:** The factors \( x^2 \) and \( (x - 2) \) in the numerator and denominator cancel out, except for one \( (x - 2) \) in the denominator. However, \( x = 0 \) causes both numerator and denominator to be zero, indicating a **removable discontinuity** (a hole) at \( x = 0 \), not a vertical asymptote. #### **2. Vertical Asymptote** After simplification, the function becomes: \[ f(x) = \frac{-1}{x - 2} \] The denominator is zero when: \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] **Behavior near \( x = 2 \):** \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{-1}{x - 2} = -\infty \] \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{-1}{x - 2} = +\infty \] Since the limits approach infinity from different directions, there is a vertical asymptote at \( x = 2 \). **Vertical Asymptote:** \[ x = 2 \] #### **3. Horizontal Asymptote** Compare the degrees of the original numerator and denominator: - **Degree of the numerator (-x³ + 2x²):** 3 - **Degree of the denominator (x⁴ - 4x³ + 4x²):** 4 Since the degree of the denominator is greater than the degree of the numerator, the horizontal asymptote is: \[ y = 0 \] --- ### **Summary of Asymptotes** 1. **Function (i):** - **Vertical Asymptotes:** \( x = \frac{1}{3} \) and \( x = -2 \) - **Horizontal Asymptote:** \( y = 0 \) 2. **Function (ii):** - **Vertical Asymptote:** \( x = 2 \) - **Horizontal Asymptote:** \( y = 0 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the vertical and horizontal asymptotes of the given functions, we will evaluate limits and identify points of discontinuity. **(i) \( f(x)=\frac{2 x-1}{3 x^{2}+5 x-2} \)** 1. **Vertical Asymptotes:** Vertical asymptotes occur where the denominator is equal to zero and the numerator is not zero at those points. We need to set the denominator to zero: \[ 3x^2 + 5x - 2 = 0 \] Factoring or using the quadratic formula: \[ x = \frac{-5 \pm \sqrt{(5)^2 - 4(3)(-2)}}{2(3)} = \frac{-5 \pm \sqrt{25 + 24}}{6} = \frac{-5 \pm 7}{6} \] This yields: \[ x = \frac{1}{3} \quad \text{and} \quad x = -2 \] Thus, vertical asymptotes are at \( x = \frac{1}{3} \) and \( x = -2 \). 2. **Horizontal Asymptotes:** For rational functions, the horizontal asymptotes depend on the degrees of the polynomial in the numerator and denominator. Here, the degree of the numerator (1) is less than the degree of the denominator (2). Therefore: \[ y = 0 \quad \text{(the x-axis)} \] This means there is a horizontal asymptote at \( y = 0 \). --- **(ii) \( f(x) = \frac{-x^{3} + 2x^{2}}{x^{4} - 4x^{3} + 4x^{2}} \)** 1. **Vertical Asymptotes:** To find vertical asymptotes, we set the denominator to zero: \[ x^{4} - 4x^{3} + 4x^{2} = 0 \implies x^{2}(x^{2} - 4x + 4) = 0 \] This gives: \[ x^2 = 0 \quad \text{or} \quad (x - 2)^2 = 0 \] Thus, we have a vertical asymptote at \( x = 0 \) and a repeated root at \( x = 2 \), indicating a vertical asymptote at \( x=2 \). 2. **Horizontal Asymptotes:** The degree of the numerator (3) is less than the degree of the denominator (4). Therefore, there is a horizontal asymptote at: \[ y = 0 \] So, for this function, there is also a horizontal asymptote at \( y = 0 \). To summarize, the vertical asymptotes for the first function are at \( x = \frac{1}{3} \) and \( x = -2 \) with a horizontal asymptote at \( y = 0 \). The second function has vertical asymptotes at \( x = 0 \) and \( x = 2 \), with a horizontal asymptote at \( y = 0 \).

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad