Pregunta

Assume a class has 19 members. a. In how many ways can a president, a vice president, and a secretary be selected? b. How many committees of 4 people can be chosen?

Ask by Burns Hampton. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 5,814 ways to select a president, vice president, and secretary, and 3,876 ways to choose a committee of 4 people.

Solución

Let's solve each part of the problem step by step. --- ### **a. Selecting a President, Vice President, and Secretary** Since the positions of president, vice president, and secretary are distinct, the order in which we select the members matters. This is a permutation problem. **Number of ways to select the officers:** 1. **President:** There are 19 possible choices. 2. **Vice President:** After selecting the president, there are 18 remaining choices. 3. **Secretary:** After selecting the president and vice president, there are 17 remaining choices. **Total number of ways:** \[ 19 \times 18 \times 17 = 5,\!814 \text{ ways} \] --- ### **b. Choosing a Committee of 4 People** When forming a committee, the order in which the members are selected does not matter. This is a combination problem. **Number of ways to choose the committee:** We use the combination formula: \[ \binom{n}{k} = \frac{n!}{k!(n - k)!} \] where \( n = 19 \) and \( k = 4 \). Plugging in the values: \[ \binom{19}{4} = \frac{19!}{4! \times 15!} = \frac{19 \times 18 \times 17 \times 16}{4 \times 3 \times 2 \times 1} = \frac{93,\!024}{24} = 3,\!876 \text{ ways} \] --- **Summary:** - **a.** There are **5,814** ways to select a president, vice president, and secretary. - **b.** There are **3,876** ways to choose a committee of 4 people.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To select a president, vice president, and secretary from a class of 19 members, we have a little fun with permutations! We can choose a president in 19 ways, a vice president in 18 ways (since the president can't also be the vice president), and a secretary in 17 ways. So the total number of ways to select these three roles is 19 × 18 × 17 = 5814. Now, for the committees of 4 people, we take a different approach—combinations this time! We use the formula for combinations, which factors in the mixture of individuals without regard to the order. The number of ways to choose 4 individuals from 19 is calculated using 19 choose 4, which is 19! / (4!(19-4)!) = 3876. So, 3876 unique committees can be formed!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad