Pregunta
upstudy study bank question image url

\( \triangle \mathrm{ABCN} \triangle \mathrm{PQR} \). If \( \operatorname{ar}(\mathrm{ABC}): \operatorname{ar}(\mathrm{PQR})=25: 9 \) then \( \mathrm{AB}: \mathrm{PQ}=-\quad \bullet 1: 225 \quad \bullet 3: 5 \) \( -225: 81 \quad \bullet 81: 225 \)

Ask by Mejia Fitzgerald. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ratio of \( \mathrm{AB} : \mathrm{PQ} \) is \( 5 : 3 \).

Solución

To determine the ratio of the corresponding sides \( \mathrm{AB} : \mathrm{PQ} \) given the ratio of the areas \( \operatorname{ar}(\mathrm{ABC}) : \operatorname{ar}(\mathrm{PQR}) = 25 : 9 \), we can use the property of similar triangles. ### Step-by-Step Solution: 1. **Understanding Similarity and Area Ratios:** For similar triangles, the ratio of their areas is equal to the square of the ratio of their corresponding sides. Mathematically, if two triangles are similar, then: \[ \frac{\text{Area}_1}{\text{Area}_2} = \left( \frac{\text{Side}_1}{\text{Side}_2} \right)^2 \] 2. **Applying the Given Ratios:** Given: \[ \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})} = \frac{25}{9} \] Let the ratio of the corresponding sides \( \mathrm{AB} : \mathrm{PQ} = x : y \). Then: \[ \left( \frac{x}{y} \right)^2 = \frac{25}{9} \] 3. **Solving for the Side Ratio:** Taking the square root of both sides: \[ \frac{x}{y} = \frac{5}{3} \] Therefore: \[ \mathrm{AB} : \mathrm{PQ} = 5 : 3 \] 4. **Interpreting the Options:** It seems there might have been a typographical error in the options presented. Based on the calculations, the correct ratio should be \( 5 : 3 \). Among the provided options: - \( 3 : 5 \) is the closest but is the inverse of the correct ratio. The intended correct answer is likely \( 5 : 3 \). ### **Final Answer:** \[ \boxed{5:\,3} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this ratio problem, we start with the area ratio, which is given as \( \operatorname{ar}(\triangle ABC): \operatorname{ar}(\triangle PQR) = 25:9 \). The area of a triangle is proportional to the square of the lengths of its sides. Therefore, if we let the sides of triangle \( ABC \) be \( k \) units, then the sides of triangle \( PQR \) will be scaled down in a ratio that represents the square root of the area ratio. Taking the square root of the area ratio \( \frac{25}{9} \) gives us \( \frac{5}{3} \), meaning \( \frac{\mathrm{AB}}{\mathrm{PQ}} = \frac{5}{3} \). We can rearrange this for better understanding: \( \mathrm{AB}: \mathrm{PQ} = 5:3 \). Now, if we convert this into a format that matches the given choices, we can find a scaling factor that fits. For the given choices, we keep multiplying both sides of the ratio till we have able to approach one of them. We can multiply \( 5 \) and \( 3 \) by 45 giving us \( 225:135 \), which can be further adjusted to filter out other wrong answers. So our best choice among the given options based on ratios derived thus go to \( -225: 81 \) as the actual side ratio is realistic given the area ratios that relate with \( 25:9 \).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad