Pregunta
upstudy study bank question image url

At what \( x \) - value will the point discontinuities of the given rational function below occur? \( f(x)=\frac{16 x(x+3)(x+6)}{x^{2}-36} \) \( x=0, x=-3 \), and \( x=-6 \) \( x=0 \) and \( x=-3 \) \( x=-6 \) \( x=0 \) only \( x \)

Ask by Cole Powers. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function has a point discontinuity at \( x = -6 \).

Solución

To determine the \( x \)-values where point discontinuities occur for the given rational function: \[ f(x) = \frac{16x(x+3)(x+6)}{x^2 - 36} \] **Step 1: Factor the Denominator** The denominator can be factored using the difference of squares: \[ x^2 - 36 = (x - 6)(x + 6) \] So, the function becomes: \[ f(x) = \frac{16x(x+3)(x+6)}{(x - 6)(x + 6)} \] **Step 2: Identify Potential Discontinuities** Point discontinuities occur where both the numerator and the denominator are zero, leading to an undefined expression that can potentially be removed by canceling common factors. 1. **At \( x = -6 \):** - Numerator: \( 16(-6)(-6+3)(-6+6) = 16(-6)(-3)(0) = 0 \) - Denominator: \( (-6 - 6)(-6 + 6) = (-12)(0) = 0 \) - Both numerator and denominator are zero, indicating a potential point discontinuity. 2. **At \( x = 6 \):** - Numerator: \( 16(6)(6+3)(6+6) \neq 0 \) - Denominator: \( (6 - 6)(6 + 6) = 0 \times 12 = 0 \) - Only the denominator is zero, indicating a vertical asymptote, not a point discontinuity. 3. **At \( x = 0 \) and \( x = -3 \):** - The denominator is not zero, so these points are continuous. **Step 3: Simplify and Confirm** After canceling the common factor \( (x + 6) \): \[ f(x) = \frac{16x(x+3)}{x - 6} \quad \text{for} \quad x \neq -6 \] This confirms that \( x = -6 \) is a removable discontinuity (a point discontinuity). **Conclusion** The function \( f(x) \) has a point discontinuity at: **\( x = -6 \)** Answer: \( x=-6 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The given rational function can experience point discontinuities in regions where the denominator equals zero. In this case, the denominator is \( x^2 - 36 \), which can be factored into \( (x - 6)(x + 6) \). This means the function has potential discontinuities at \( x = 6 \) and \( x = -6 \). While \( x = -6 \) does create a point discontinuity, the other factors in the numerator do not cancel it out, making it a notable discontinuity. To review, the correct answer is that the point discontinuity occurs at \( x = -6 \). Now you're officially a point discontinuity detective! 🔍🐾

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad