Pregunta
upstudy study bank question image url

Which expression is not equivalent to \( 36 x^{6}-25 y^{4} \) ? \( \begin{array}{ll}\text { (1) } 6^{2}\left(x^{3}\right)^{2}-5^{2}\left(y^{2}\right)^{2} & \text { (3) }\left(6 x^{6}-5 y^{4}\right)\left(6 x^{6}+5 y^{4}\right) \\ \text { (2) }\left(6 x^{3}-5 y^{2}\right)\left(6 x^{3}+5 y^{2}\right) & \text { (4) }\left(3 \cdot 2 x^{3}-5 y^{2}\right)\left(3 \cdot 2 x^{3}+5 y^{2}\right)\end{array} \)

Ask by Schmidt Hobbs. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Option (3) \(\left(6 x^{6}-5 y^{4}\right)\left(6 x^{6}+5 y^{4}\right)\) is not equivalent to \(36x^{6} - 25y^{4}\).

Solución

To determine which expression is not equivalent to \( 36x^{6} - 25y^{4} \), let's evaluate each option: 1. **Option (1):** \[ 6^{2}\left(x^{3}\right)^{2} - 5^{2}\left(y^{2}\right)^{2} = 36x^{6} - 25y^{4} \] This is directly equivalent to \( 36x^{6} - 25y^{4} \). 2. **Option (2):** \[ (6x^{3} - 5y^{2})(6x^{3} + 5y^{2}) = (6x^{3})^{2} - (5y^{2})^{2} = 36x^{6} - 25y^{4} \] This is also equivalent to \( 36x^{6} - 25y^{4} \). 3. **Option (3):** \[ (6x^{6} - 5y^{4})(6x^{6} + 5y^{4}) = (6x^{6})^{2} - (5y^{4})^{2} = 36x^{12} - 25y^{8} \] This results in \( 36x^{12} - 25y^{8} \), which is **not** equivalent to \( 36x^{6} - 25y^{4} \). 4. **Option (4):** \[ (3 \cdot 2x^{3} - 5y^{2})(3 \cdot 2x^{3} + 5y^{2}) = (6x^{3})^{2} - (5y^{2})^{2} = 36x^{6} - 25y^{4} \] This is equivalent to \( 36x^{6} - 25y^{4} \). **Conclusion:** **Option (3) \(\left(6 x^{6}-5 y^{4}\right)\left(6 x^{6}+5 y^{4}\right)\)** is not equivalent to \( 36x^{6} - 25y^{4} \). **Answer:** (3) \(\left(6 x^{6}-5 y^{4}\right)\left(6 x^{6}+5 y^{4}\right)\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine which expression is not equivalent to \( 36 x^{6}-25 y^{4} \), we can start by recognizing that this expression takes the form \( a^2 - b^2 \), which factors into \( (a-b)(a+b) \). Here, \( a = 6x^3 \) and \( b = 5y^2 \). The correct factoring gives us \( (6x^3 - 5y^2)(6x^3 + 5y^2) \), which corresponds to option (2). Options (1) and (4) are valid representations of the original expression, while option (3), \( (6 x^6 - 5 y^4)(6 x^6 + 5 y^4) \), mistakenly suggests factoring based on \( 36 x^{6}-25 y^{4} \) incorrectly as it doesn't align with our original \( a^2 - b^2 \) setup. Thus, option (3) is the one that is not equivalent. Here’s a little history nugget: the difference of squares, like \( a^2 - b^2 \), dates back to ancient Greek mathematicians! They laid the foundational work that led to our modern algebraic identities. And for a practical tip, always double-check your factorizations! A common mistake is to forget that each term’s coefficients and variables affect the overall expression. When simplifying or factoring, keep an eye out for signs and terms to avoid unintended errors.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad