Pregunta

Define the sine function in terms of a right triangle.

Ask by Guerrero Ramirez. in South Africa
Jan 12,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sine of an angle in a right triangle is the length of the side opposite the angle divided by the length of the hypotenuse.

Solución

The **sine function** is one of the fundamental trigonometric functions and can be easily understood using a **right triangle**. Here's how the sine of an angle is defined in the context of a right triangle: ### Right Triangle Basics A **right triangle** is a triangle that has one angle exactly equal to 90 degrees. The sides of a right triangle are typically labeled as follows: - **Hypotenuse** (`c`): The side opposite the right angle; it is the longest side of the triangle. - **Opposite side** (`a`): The side opposite the angle you are considering (let's call this angle θ). - **Adjacent side** (`b`): The side adjacent (next to) the angle θ, excluding the hypotenuse. ### Defining Sine in a Right Triangle For a given acute angle θ in a right triangle, the sine of θ (written as sin θ) is defined as the ratio of the length of the **opposite side** to the length of the **hypotenuse**. Mathematically, this is expressed as: \[ \sin \theta = \frac{\text{Opposite Side}}{\text{Hypotenuse}} = \frac{a}{c} \] ### Visual Representation Consider the following right triangle: ``` |\ | \ a | \ c | \ |____\ b ``` - Angle θ is one of the non-right angles. - Side `a` is opposite angle θ. - Side `b` is adjacent to angle θ. - Side `c` is the hypotenuse. In this triangle: \[ \sin \theta = \frac{a}{c} \] ### Example Suppose you have a right triangle where: - The length of the hypotenuse (`c`) is 10 units. - The length of the side opposite angle θ (`a`) is 6 units. To find sin θ: \[ \sin \theta = \frac{a}{c} = \frac{6}{10} = 0.6 \] So, **sin θ = 0.6**. ### Summary - **Sine of an angle (sin θ)** in a right triangle is the ratio of: - **Opposite side** (the side opposite the angle) - **Divided by the hypotenuse** (the longest side of the triangle) Understanding this ratio is essential for solving various problems in trigonometry, such as finding unknown side lengths or angles in right triangles.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In a right triangle, the sine function is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse. So, if you have a right triangle with an angle \( \theta \), the sine of \( \theta \) is given by \( \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \). This simple relationship helps in understanding not just the triangle itself, but also how angles, sides, and even circles are interrelated! Now, imagine you're trying to climb a hill (the opposite side) while knowing how long your climbing rope (the hypotenuse) is. The sine function allows you to calculate the angle you’ll need to maintain based on those measurements. It’s not just useful for math class—think of it as your secret tool when hiking, surveying land, or even designing roller coasters!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad