Pregunta
a. \( x+-6+5 x+3 x^{2}-1= \)
Ask by Fleming Ayala. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \(3x^{2} + 6x - 7\).
Solución
Sure, let's simplify the given expression step by step.
**Given Expression:**
\[ x + (-6) + 5x + 3x^{2} - 1 = \]
**Step 1: Combine Like Terms**
1. **Quadratic Terms (\(x^2\)):**
- There's only one quadratic term: \(3x^{2}\).
2. **Linear Terms (\(x\)):**
- \(x + 5x = 6x\).
3. **Constant Terms:**
- \(-6 - 1 = -7\).
**Step 2: Write the Simplified Expression**
Combine all the simplified terms:
\[ 3x^{2} + 6x - 7 = \]
**Final Simplified Form:**
\[ 3x^{2} + 6x - 7 = 0 \]
*(Assuming the equation is set to zero. If not, you can leave the expression without "= 0".)*
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
Let’s simplify that expression! We have \( x - 6 + 5x + 3x^2 - 1 \). First, combine like terms: the \(x\) terms are \(x + 5x = 6x\), and then the constants: \(-6 - 1 = -7\). So, we can rewrite it as \(3x^2 + 6x - 7\). Voilà! Now, you’ve got a quadratic equation, which opens the door to various methods for solving it, like factoring, completing the square, or using the quadratic formula. Quadratics actually pop up everywhere, from projectile motion to financial calculations, making them super practical to master!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium