Pregunta
upstudy study bank question image url

Solve the following absolute value inequality. Write the solution set using interval notation and graph it. \[ \left|\frac{x-4}{3}\right|>1 \]

Ask by Reese Kelly. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution set is all real numbers less than 1 or greater than 7, written in interval notation as \((-\infty, 1) \cup (7, \infty)\).

Solución

To solve the absolute value inequality: \[ \left|\frac{x-4}{3}\right| > 1 \] we can break it down into two separate inequalities: 1. **Case 1:** \(\frac{x-4}{3} > 1\) 2. **Case 2:** \(\frac{x-4}{3} < -1\) Let's solve each case individually. ### Case 1: \(\frac{x-4}{3} > 1\) Multiply both sides by 3 to isolate \(x\): \[ x - 4 > 3 \] Add 4 to both sides: \[ x > 7 \] ### Case 2: \(\frac{x-4}{3} < -1\) Multiply both sides by 3: \[ x - 4 < -3 \] Add 4 to both sides: \[ x < 1 \] ### Combining Both Cases The solution set consists of all real numbers less than 1 or greater than 7. In interval notation, this is: \[ (-\infty, 1) \cup (7, \infty) \] ### Graphing the Solution Here's how the solution looks on a number line: \[ \begin{array}{c|cccccccccc} x & \cdots & -2 & -1 & 0 & \mathbf{1} & 2 & \cdots & 6 & \mathbf{7} & 8 & \cdots \\ \hline \text{Solution} & \bullet & \longleftarrow & & & & & & \longrightarrow & \bullet & \\ \end{array} \] - **Open circles** at \(x = 1\) and \(x = 7\) indicate that these points are not included in the solution. - **Shading** extends to the left of 1 and to the right of 7, representing all values \(x < 1\) and \(x > 7\). ### Final Answer \[ \boxed{\,(-\infty,\ 1)\ \cup\ (7,\ \infty)\,} \] **Graph:** \[ \begin{array}{c|cccccccccc} & \cdots & 1 & \cdots & 7 & \cdots \\ \hline \text{Number Line} & \text{<----} & \circ & \text{----} & \circ & \text{---->} \end{array} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the inequality \(\left|\frac{x-4}{3}\right| > 1\), we can break it down into two separate inequalities: 1. \(\frac{x-4}{3} > 1\) 2. \(\frac{x-4}{3} < -1\) For the first inequality: \[\frac{x-4}{3} > 1\] Multiplying both sides by 3 (since 3 is positive) gives us: \[x - 4 > 3\] Adding 4 to both sides results in: \[x > 7\] For the second inequality: \[\frac{x-4}{3} < -1\] Again, multiplying both sides by 3 gives us: \[x - 4 < -3\] Adding 4 to both sides leads to: \[x < 1\] Combining these results, we find that the solution set is \(x < 1\) or \(x > 7\). In interval notation, this is expressed as: \((- \infty, 1) \cup (7, \infty)\). Graphically, this can be illustrated with two open intervals on a number line; one extending leftward from 1 and the other extending rightward from 7, indicating that points in those ranges do satisfy the original inequality.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad