\( f(x)=\frac{1}{4} x-8 \) If \( f(X)=-\frac{7}{2} \), find \( X \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( X \), we need to set \( f(X) \) equal to \(-\frac{7}{2}\) and solve for \( X \). Starting with the function: \[ f(X) = \frac{1}{4}X - 8 \] Set \( f(X) \) equal to \(-\frac{7}{2}\): \[ \frac{1}{4}X - 8 = -\frac{7}{2} \] Next, add 8 to both sides: \[ \frac{1}{4}X = -\frac{7}{2} + 8 \] To simplify, convert 8 to a fraction with a denominator of 2: \[ 8 = \frac{16}{2} \] So, \[ -\frac{7}{2} + \frac{16}{2} = \frac{9}{2} \] Now we have: \[ \frac{1}{4}X = \frac{9}{2} \] To solve for \( X \), multiply both sides by 4: \[ X = 4 \times \frac{9}{2} = \frac{36}{2} = 18 \] Thus, the value of \( X \) is \( 18 \).