Responder
**Derivatives:**
- **(a)** \( f'(x) = -\dfrac{6}{x^{2}} \)
- **(b)(i)**
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^{2}(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}}
\]
- **(b)(ii)**
\[
p'(t) = \frac{1}{1 - \sin(t)}
\]
- **(b)(iii)**
\[
g'(x) = \frac{1}{1 + e^{x}}
\]
Solución
Certainly! Let's tackle each part of your question step by step.
---
### **Problem (a):**
**Use the method of first principles to determine the derivative of \( f(x) = \frac{6}{x} \).**
**Solution:**
The derivative of a function \( f(x) \) using first principles (the definition of the derivative) is given by:
\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]
Let's apply this to \( f(x) = \frac{6}{x} \):
1. **Compute \( f(x + h) \):**
\[
f(x + h) = \frac{6}{x + h}
\]
2. **Find the difference \( f(x + h) - f(x) \):**
\[
f(x + h) - f(x) = \frac{6}{x + h} - \frac{6}{x} = 6\left( \frac{1}{x + h} - \frac{1}{x} \right)
\]
3. **Simplify the difference:**
\[
6\left( \frac{1}{x + h} - \frac{1}{x} \right) = 6 \left( \frac{x - (x + h)}{x(x + h)} \right) = 6 \left( \frac{-h}{x(x + h)} \right) = \frac{-6h}{x(x + h)}
\]
4. **Divide by \( h \) and take the limit as \( h \to 0 \):**
\[
f'(x) = \lim_{h \to 0} \frac{-6h}{x(x + h)h} = \lim_{h \to 0} \frac{-6}{x(x + h)} = \frac{-6}{x^2}
\]
**Answer:**
\[
f'(x) = -\frac{6}{x^2}
\]
---
### **Problem (b)(i):**
**Differentiate \( f(x) = \cos\left( \sqrt{\sin(\tan(\pi x))} \right) \).**
**Solution:**
To find the derivative of a composite function, we'll use the chain rule multiple times. Let's break it down step by step.
1. **Identify the innermost function and work outward:**
- Let \( u = \tan(\pi x) \)
- Then \( v = \sin(u) = \sin(\tan(\pi x)) \)
- Next, \( w = \sqrt{v} = \sqrt{\sin(\tan(\pi x))} \)
- Finally, \( f(x) = \cos(w) = \cos\left( \sqrt{\sin(\tan(\pi x))} \right) \)
2. **Differentiate each layer using the chain rule:**
- \( \frac{du}{dx} = \pi \sec^2(\pi x) \)
(Derivative of \( \tan(\pi x) \) is \( \pi \sec^2(\pi x) \))
- \( \frac{dv}{du} = \cos(u) = \cos(\tan(\pi x)) \)
- \( \frac{dw}{dv} = \frac{1}{2\sqrt{v}} = \frac{1}{2\sqrt{\sin(\tan(\pi x))}} \)
- \( \frac{df}{dw} = -\sin(w) = -\sin\left( \sqrt{\sin(\tan(\pi x))} \right) \)
3. **Apply the chain rule by multiplying the derivatives:**
\[
f'(x) = \frac{df}{dw} \cdot \frac{dw}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx}
\]
Substituting the derivatives:
\[
f'(x) = \left[ -\sin\left( \sqrt{\sin(\tan(\pi x))} \right) \right] \cdot \left[ \frac{1}{2\sqrt{\sin(\tan(\pi x))}} \right] \cdot \left[ \cos(\tan(\pi x)) \right] \cdot \left[ \pi \sec^2(\pi x) \right]
\]
4. **Simplify the expression:**
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2\sqrt{\sin(\tan(\pi x))}}
\]
**Answer:**
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^2(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}}
\]
---
### **Problem (b)(ii):**
**Differentiate \( p(t) = \frac{\cos(t)}{1 - \sin(t)} \).**
**Solution:**
We'll use the quotient rule for differentiation, which states:
\[
\left( \frac{N}{D} \right)' = \frac{N' D - N D'}{D^2}
\]
For \( p(t) = \frac{\cos(t)}{1 - \sin(t)} \):
1. **Identify \( N(t) \) and \( D(t) \):**
- \( N(t) = \cos(t) \)
- \( D(t) = 1 - \sin(t) \)
2. **Find the derivatives \( N'(t) \) and \( D'(t) \):**
- \( N'(t) = -\sin(t) \)
- \( D'(t) = -\cos(t) \)
3. **Apply the quotient rule:**
\[
p'(t) = \frac{(-\sin(t))(1 - \sin(t)) - \cos(t)(-\cos(t))}{(1 - \sin(t))^2}
\]
4. **Simplify the numerator:**
\[
-\sin(t)(1 - \sin(t)) + \cos^2(t) = -\sin(t) + \sin^2(t) + \cos^2(t)
\]
Recall that \( \sin^2(t) + \cos^2(t) = 1 \), so:
\[
-\sin(t) + 1 = 1 - \sin(t)
\]
5. **Final expression for the derivative:**
\[
p'(t) = \frac{1 - \sin(t)}{(1 - \sin(t))^2} = \frac{1}{1 - \sin(t)}
\]
**Answer:**
\[
p'(t) = \frac{1}{1 - \sin(t)}
\]
---
### **Problem (b)(iii):**
**Differentiate \( g(x) = \ln\left( \frac{e^x}{1 + e^x} \right) \).**
**Solution:**
First, let's simplify the expression before differentiating.
1. **Simplify \( g(x) \):**
\[
g(x) = \ln\left( \frac{e^x}{1 + e^x} \right) = \ln(e^x) - \ln(1 + e^x) = x - \ln(1 + e^x)
\]
2. **Differentiate \( g(x) \):**
\[
g'(x) = \frac{d}{dx} \left( x - \ln(1 + e^x) \right) = 1 - \frac{d}{dx} \ln(1 + e^x)
\]
3. **Differentiate \( \ln(1 + e^x) \):**
Using the chain rule:
\[
\frac{d}{dx} \ln(1 + e^x) = \frac{e^x}{1 + e^x}
\]
4. **Combine the results:**
\[
g'(x) = 1 - \frac{e^x}{1 + e^x} = \frac{(1 + e^x) - e^x}{1 + e^x} = \frac{1}{1 + e^x}
\]
**Answer:**
\[
g'(x) = \frac{1}{1 + e^{x}}
\]
---
### **Summary of Answers:**
- **(a)** \( f'(x) = -\dfrac{6}{x^{2}} \)
- **(b)(i)**
\[
f'(x) = -\frac{\pi \sin\left( \sqrt{\sin(\tan(\pi x))} \right) \cos(\tan(\pi x)) \sec^{2}(\pi x)}{2 \sqrt{\sin(\tan(\pi x))}}
\]
- **(b)(ii)**
\[
p'(t) = \frac{1}{1 - \sin(t)}
\]
- **(b)(iii)**
\[
g'(x) = \frac{1}{1 + e^{x}}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución