State the horizontal asymptote for the function \( f(x)=2^{12 x}-5 \) : \( y=2 \) \( x=2 \) \( y=-5 \) \( x=-5 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
For the function \( f(x) = 2^{12x} - 5 \), as \( x \) approaches negative infinity, the term \( 2^{12x} \) approaches 0. Thus, \( f(x) \) approaches \( -5 \). Therefore, the horizontal asymptote is \( y = -5 \). Another interesting aspect of horizontal asymptotes is that they indicate the long-term behavior of a function as \( x \) moves towards infinity or negative infinity. In the case of exponential functions, such as this one, they can reveal how the function behaves with very large or very small values of \( x \), providing insights into its growth or decay patterns.