Pregunta
upstudy study bank question image url

Given the function \( f(x)=\sqrt[3]{x} \), what is the new function after a horizontal stretch by a factor of 4? Option \#1: \( f(x)=\sqrt[3]{4 x} \) Option \#2: \( f(x)=4 \sqrt[3]{x} \) Option \#3: \( f(x)=\sqrt[3]{0.25 x} \) Option \#4: \( f(x)=0.25 \sqrt[3]{x} \)

Ask by Burns Johnson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct function after a horizontal stretch by a factor of 4 is \( f(x) = \sqrt[3]{0.25x} \).

Solución

To perform a **horizontal stretch** on the function \( f(x) = \sqrt[3]{x} \) by a factor of 4, you need to understand how such transformations affect the function. ### Understanding Horizontal Stretch A horizontal stretch by a factor of \( k \) is achieved by replacing \( x \) with \( \frac{x}{k} \) in the function. Mathematically, this transformation is represented as: \[ f_{\text{new}}(x) = f\left(\frac{x}{k}\right) \] For a **horizontal stretch by a factor of 4**, set \( k = 4 \): \[ f_{\text{new}}(x) = \sqrt[3]{\frac{x}{4}} = \sqrt[3]{0.25x} \] ### Evaluating the Options Let's compare this with the given options: 1. **Option 1:** \( f(x) = \sqrt[3]{4x} \) - This represents a **horizontal compression** by a factor of \( \frac{1}{4} \), not a stretch. 2. **Option 2:** \( f(x) = 4 \sqrt[3]{x} \) - This is a **vertical stretch** by a factor of 4, not a horizontal transformation. 3. **Option 3:** \( f(x) = \sqrt[3]{0.25x} \) - This matches our derived transformation for a horizontal stretch by a factor of 4. 4. **Option 4:** \( f(x) = 0.25 \sqrt[3]{x} \) - This is a **vertical compression** by a factor of 0.25, not a horizontal stretch. **Therefore, the correct transformation is Option 3.** **Answer:** Option #3: \( f(x)=\sqrt[3]{0.25 x} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To apply a horizontal stretch by a factor of 4 to the function \( f(x) = \sqrt[3]{x} \), we need to replace \( x \) with \( \frac{x}{4} \). This gives us the new function: \[ f(x) = \sqrt[3]{\frac{x}{4}} = \sqrt[3]{0.25 x} \] So, the correct option is Option \#3: \( f(x)=\sqrt[3]{0.25 x} \). Now that you know the answer, here’s a little extra trivia: Horizontal stretches actually affect how wide the graph appears—basically, it makes the function spread out! This means that as you move from left to right along the x-axis, the function takes longer to reach higher values, resulting in a flatter appearance. Thinking of practical applications, functions like this pop up in various fields. For instance, in physics, the relationships between quantities often depend on such transformations. If you stretch time or space for certain events or measurements, you're effectively applying these types of transformations to the underlying functions to model real-world behavior!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad