44. What is the inverse of \( f(x)=2^{x}-3 \) ? A. \( f^{-1}(x)=\log _{3}(x+2) \) B. \( f^{-1}(x)=\log _{2}(x+3) \) C. \( f^{-1}(x)=\log _{3}(x-2) \) D. \( f^{-1}(x)=\log _{2}(x-3) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the inverse of the function \( f(x) = 2^{x} - 3 \), we start by replacing \( f(x) \) with \( y \): 1. Set \( y = 2^x - 3 \). 2. To find the inverse, solve for \( x \): - \( y + 3 = 2^x \) - Take the logarithm base 2: \( x = \log_2(y + 3) \). Thus, the inverse function is \( f^{-1}(x) = \log_2(x + 3) \), which corresponds to option B! This exercise highlights the importance of logarithms in reversing exponential functions, a key concept in mathematics often encountered in various scientific disciplines! Additionally, the concept of inverse functions is not just limited to mathematics. In real-world applications, understanding how to reverse processes can help us in fields like engineering, where one may need to predict the input values required to achieve desired results based on output conditions—think of it as a balance between cause and effect!