Pregunta
For the universal set, \( U=\{h, p, q, r, x, y, z\} \), complete the parts below. Write your answers in roster form or as \( \varnothing \). (a) Suppose we know that \( \bar{B}=\{p, x, y\} \). Then what would \( B \) have to be? \[ B=\square \] (b) Suppose \( C=\{p, q, r, x, y\} \). Then what is \( \bar{C}=\square \)
Ask by Ortega Joseph. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
(a) \( B = \{h, q, r, z\} \)
(b) \( \overline{C} = \{h, z\} \)
Solución
Let's solve each part step by step using the universal set \( U = \{h, p, q, r, x, y, z\} \).
### Part (a)
**Given:** \( \overline{B} = \{p, x, y\} \)
**To find:** \( B \)
The complement of \( B \) (\( \overline{B} \)) consists of all elements in the universal set \( U \) that are **not** in \( B \). Therefore, to find \( B \), we subtract \( \overline{B} \) from \( U \):
\[
B = U \setminus \overline{B} = \{h, p, q, r, x, y, z\} \setminus \{p, x, y\} = \{h, q, r, z\}
\]
**Answer:**
\[
B = \{h, q, r, z\}
\]
### Part (b)
**Given:** \( C = \{p, q, r, x, y\} \)
**To find:** \( \overline{C} \)
The complement of \( C \) (\( \overline{C} \)) includes all elements in \( U \) that are **not** in \( C \). So, we subtract \( C \) from \( U \):
\[
\overline{C} = U \setminus C = \{h, p, q, r, x, y, z\} \setminus \{p, q, r, x, y\} = \{h, z\}
\]
**Answer:**
\[
\overline{C} = \{h, z\}
\]
### Summary
(a) \( B = \{h, q, r, z\} \)
(b) \( \overline{C} = \{h, z\} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find \( B \), we need to determine the elements in the universal set \( U \) that are not in \( \bar{B} \). The elements of \( U \) are \( \{h, p, q, r, x, y, z\} \), and \( \bar{B}=\{p, x, y\} \). Therefore, \( B \) must include the remaining elements of the universal set: \[ B=\{h, q, r, z\} \] Next, for \( \bar{C} \), we look at the elements in the universal set that are not included in set \( C=\{p, q, r, x, y\} \). The missing elements from \( U \) are: \[ \bar{C}=\{h, z\} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium