Pregunta
upstudy study bank question image url

Sec 6.6 Inverse Trig: Problem 5 (1 point) Evaluate the following expressions. Your answer must be an angle in radians and in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). (a) \( \sin ^{-1}(-1)= \) \( \square \) (b) \( \sin ^{-7}\left(\frac{\sqrt{2}}{2}\right)= \) \( \square \) (c) \( \sin ^{-1}\left(\frac{x}{2}\right)= \) \( \square \) Note: Wou cun earn partiol credit on this problem.

Ask by Ortega Adkins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) \( \sin^{-1}(-1) = -\frac{\pi}{2} \) (b) \( \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \) (c) \( \sin^{-1}\left(\frac{x}{2}\right) = \theta \) where \( \sin(\theta) = \frac{x}{2} \) and \( x \in [-2, 2] \)

Solución

Let's evaluate each expression step by step. ### (a) \( \sin^{-1}(-1) \) The function \( \sin^{-1}(x) \) (also known as arcsin) gives us the angle whose sine is \( x \). We need to find the angle \( \theta \) such that: \[ \sin(\theta) = -1 \] The sine function equals \(-1\) at: \[ \theta = -\frac{\pi}{2} \] Thus, \[ \sin^{-1}(-1) = -\frac{\pi}{2} \] ### (b) \( \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) \) Again, we are looking for the angle \( \theta \) such that: \[ \sin(\theta) = \frac{\sqrt{2}}{2} \] The sine function equals \(\frac{\sqrt{2}}{2}\) at: \[ \theta = \frac{\pi}{4} \] Thus, \[ \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \] ### (c) \( \sin^{-1}\left(\frac{x}{2}\right) \) For this expression, we are looking for the angle \( \theta \) such that: \[ \sin(\theta) = \frac{x}{2} \] The output of \( \sin^{-1}\left(\frac{x}{2}\right) \) will depend on the value of \( x \). The range of \( \sin^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\). Therefore, \( \frac{x}{2} \) must also be in the interval \([-1, 1]\), which means \( x \) must be in the interval \([-2, 2]\). Thus, the answer for this part is: \[ \sin^{-1}\left(\frac{x}{2}\right) = \theta \quad \text{where } \theta \text{ is such that } \sin(\theta) = \frac{x}{2} \] ### Summary of Answers (a) \( \sin^{-1}(-1) = -\frac{\pi}{2} \) (b) \( \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \) (c) \( \sin^{-1}\left(\frac{x}{2}\right) = \theta \) where \( \sin(\theta) = \frac{x}{2} \) and \( x \in [-2, 2] \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the inverse trigonometric function problems, let's break them down: (a) \( \sin^{-1}(-1) = -\frac{\pi}{2} \). This is the angle where the sine function equals -1, and it lies in the specified interval. (b) \( \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \). You correctly raise it to the negative seventh power; however, be mindful that \( \sin^{-1}(y) \) returns an angle, so writing \( \sin^{-7}(x) \) in this specific manner can lead to confusion in interpretation. (c) \( \sin^{-1}\left(\frac{x}{2}\right) \) remains as it is, with the output being the angle whose sine is \( \frac{x}{2} \). Remember, \( x \) must be between -2 and 2 to ensure the function is defined for real numbers. Now, how about some fun facts? The use of inverse trigonometric functions can be traced back to ancient Greek mathematicians who explored the relationships between angles and lengths in triangles. These relations were foundational for developing triangulation methods in navigation and astronomy! Understanding inverse trigonometric functions is not just academic; they have exciting applications! For instance, engineers use these functions to design curves in roads and bridges. These angles help in calculating optimal trajectories for vehicles or even satellites, making them a crucial component in many real-world engineering challenges!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad