Pregunta
upstudy study bank question image url

Graph the function. \[ f(x)=-3 x^{2} \]

Ask by Gibbs Patel. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the function \( f(x) = -3x^{2} \), plot the vertex at (0,0), and draw a downward-opening parabola passing through points like (-2, -12), (-1, -3), (1, -3), and (2, -12).

Solución

To graph the function \( f(x) = -3x^{2} \), let's analyze its key features and plot some important points. ### 1. **Basic Shape** - **Parabola**: The function is a quadratic function, which graphs as a parabola. - **Orientation**: Since the coefficient of \( x^2 \) is negative (\(-3\)), the parabola opens **downward**. - **Vertex**: The vertex form of a parabola \( f(x) = a(x-h)^2 + k \) shows that the vertex is at \((h, k)\). For \( f(x) = -3x^{2} \), the vertex is at \((0, 0)\). ### 2. **Axis of Symmetry** - The axis of symmetry is the vertical line that passes through the vertex. For this function, it's the **y-axis** or \( x = 0 \). ### 3. **Plotting Key Points** Let's calculate the function's value at several \( x \)-values to plot points: | \( x \) | \( f(x) = -3x^{2} \) | |---------|-----------------------| | -2 | \( -3(-2)^2 = -12 \) | | -1 | \( -3(-1)^2 = -3 \) | | 0 | \( -3(0)^2 = 0 \) | | 1 | \( -3(1)^2 = -3 \) | | 2 | \( -3(2)^2 = -12 \) | ### 4. **Graphing the Function** Here's a simple **ASCII representation** of the graph: ``` y | 12| | 6| | --------|-------- x | -6| * * | -12|* * | ``` **Explanation of the ASCII Graph:** - The vertex \((0, 0)\) is at the center. - Points \((1, -3)\) and \((-1, -3)\) are marked with `*`. - Points \((2, -12)\) and \((-2, -12)\) are also marked, showing the parabola getting narrower as it moves away from the vertex. ### 5. **Graph Characteristics** - **Vertex**: \((0, 0)\) – the highest point of the parabola since it opens downward. - **Direction**: Opens downward. - **Width**: Steeper than the standard parabola \( y = -x^{2} \) due to the coefficient \(-3\). ### 6. **Visualization Using Desmos** For a more precise and visual graph, you can use graphing tools like [Desmos](https://www.desmos.com/calculator). Simply enter the function \( f(x) = -3x^{2} \) into the calculator to see an accurate graph. ![Graph of f(x) = -3x²](https://i.imgur.com/ZhJ6V4X.png) *(Please note: In an actual implementation, ensure to include the graph image or provide a link to it. Since I cannot generate images directly, using Desmos or another graphing tool is recommended for visualization.)* ### Summary - **Type**: Downward-opening parabola - **Vertex**: (0, 0) - **Axis of Symmetry**: \( x = 0 \) - **Key Points**: \((-2, -12)\), \((-1, -3)\), \((0, 0)\), \((1, -3)\), \((2, -12)\) By plotting these points and understanding the shape, you can accurately graph the function \( f(x) = -3x^{2} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To create the graph of the function \( f(x) = -3x^2 \), first, note that it's a quadratic function with a negative leading coefficient, which means it opens downwards. The vertex, which is the highest point of the graph, is at the origin (0, 0) since there are no additional terms. For a clear idea of its shape, you can plot points by choosing some values for \( x \); for instance, if \( x = 1 \), then \( f(1) = -3 \), giving you the point (1, -3). Now, as you move further from the vertex along the x-axis in either direction, the function decreases more steeply, as indicated by the negative coefficient of the quadratic term. The graph will be symmetrical about the y-axis since there are no linear \( x \) terms. If you sketch it, you’ll see an upside-down parabola with the highest point at the vertex and curving down as you move away from the vertex!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad